본 연구는 기업의 국제화 수준이 기업 간 제휴 파트너로서의 매력도를 증가시키는지 검증해 보고자 하였다. 이 와 더불어 기술적 역량과 기업집단 소속여부가 국제화 수준과 기업 간 제휴형성 사이의 관계를 강화시키는지도 함께 검증하였다. 가설의 검증을 위해 1997년 기준 코스닥 등록기업 리스트를 토대로 1997년부터 2014년까지 국내 242개 제조업체에서 수집한 3,546개의 쌍체 표본 자료(dyadic data)를 구성하였다. 음이항 회귀분석 (negative binominal regression)을 사용한 실증분석 결과, 국제화 수준이 기업간 제휴형성에 긍정적인 영향을 미칠 것이라는 본 논문의 가설이 지지된다는 것을 확인할 수 있었다. 한편, 기술적 역량과 기업집단 소속여부는 기업 간의 제휴형성에 긍정적인 영향을 미치는 것이 확인되었으나 국제화 수준과 기업 간 제휴형성 사이에서의 조절효과는 나타나지 않았다. 본 논문의 결과에 따르면, 제휴 파트너 선택 과정에서 국제화 수준이라는 지표는 제휴 파트너 기업의 내부 역량에 대한 긍정적인 신호로 작용하여 조직 장(organizational field) 내에서의 잠재 적 제휴 파트너로서의 정당성을 획득하는 수단이 될 수도 있음을 시사한다. 본 논문은 국제화 수준이라는 지표가 오디언스(audience)로 하여금 해당 조직의 내부역량에 대한 긍정적 기대효과를 유발할 수도 있음을, 실제 기업 간의 전략적 제휴라는 상황적 맥락을 바탕으로 이론화하고 이를 실증분석 하였다는데 의의가 있다.
Recent progress has been made to establish intestinal organoids for an in vitro model as a potential alternative to an in vivo system in animals. We previously reported a reliable method for the isolation of intestinal crypts from the small intestine and robust three-dimensional (3D) expansion of intestinal organoids (basal-out) in adult bovines. The present study aimed to establish next-generation intestinal organoids for practical applications in disease modeling-based host-pathogen interactions and feed efficiency measurements. In this study, we developed a rapid and convenient method for the efficient generation of intestinal organoids through the modulation of the Wnt signaling pathway and continuous apical-out intestinal organoids. Remarkably, the intestinal epithelium only takes 3-4 days to undergo CHIR (1 µM) treatment as a Wnt activator, which is much shorter than that required for spontaneous differentiation (7 days). Subsequently, we successfully established an apical-out bovine intestinal organoid culture system through suspension culture without Matrigel matrix, indicating an apical-out membrane on the surface. Collectively, these results demonstrate the efficient generation and next-generation of bovine intestinal organoids and will facilitate their potential use for various purposes, such as disease modeling, in the field of animal biotechnology.
Lysophosphatidic acid (LPA) is a bioactive lipid messenger involved in the pathogenesis of chronic inflammation and various diseases. Recent studies have shown an association between periodontitis and neuroinflammatory diseases such as Alzheimer’s disease, stroke, and multiple sclerosis. However, the mechanistic relationship between periodontitis and neuroinflammatory diseases remains unclear. The current study found that lysophosphatidic acid receptors 1 (LPAR1) and 6 (LPAR6) exhibited increased expression in primary microglia and astrocytes. The primary astrocytes were then treated using medium conditioned to mimic periodontitis through addition of Porphyromonas gingivalis lipopolysaccharides, and an increased nitric oxide (NO) production was observed. Application of conditioned medium from human periodontal ligament stem cells with or without LPAR1 knockdown showed a decrease in the production of NO and expression of inducible nitric oxide synthase and interleukin 1 beta. These findings may contribute to our understanding of the mechanistic link between periodontitis and neuroinflammatory diseases.
The paper measures and predicts the performance of online auxiliary channel of movies released in China. Based on the signaling theory, the paper confirms that online movie consumption is generally informed by the box-office revenue of the same movie, with genres as important moderators.
Alopecia has emerged as one of the biggest interests in modern society. Many studies have focused on the treatment of alopecia, such as transplantation of hair follicles or inhibition of the androgen pathway. Hair growth is achieved through proper proliferation of the components such as keratinocytes and dermal papilla cells (DPCs), movement, and interaction between the two cells. The present study examined the effect of the hedgehog (Hh) signaling pathway, which is an important and fundamental signal in the cell, on the morphology and the viability of human keratinocytes and DPCs. Upregulation of Hh signaling caused a morphological change and an increase in epithelium-mesenchymal transition-related gene expression but reduced the viability of keratinocytes, while the alteration of Hh signaling did not cause any change in DPCs. The results show the possibility that the regulation of Hh signaling can be applied for the treatment of alopecia.
S-adenosylhomocysteine hydrolase-like protein 1 (AHCYL1), also known as IP3 receptor- binding protein released with IP3 (IRBIT), regulates IP3-induced Ca2+ release in the cytoplasm of cells and, therefore, is likely to be an important gene regulating various biological processes in the oviduct of chickens. However, the identification of the AHCYL1 gene in chickens has not been investigated. Therefore, the objectives of this study were to examine the tissue- and cell-specific expression of AHCYL1 gene in chicken organs, especially in reproductive organ, and determine functional actions of AHCYL1 in chicken oviduct development via estrogen. The results indicated that AHCYL1 mRNA is expressed in chicken reproductive organs and DES(diethylstilbesterol, a synthetic estrogen agonist) stimulates the cell specific expression of AHCYL1 in immature chicken oviduct. These results suggest that AHCYL1 is a novel estrogen-stimulated gene associated with development of the chicken oviduct. Next, in the present study, we show that inhibition of Erk1/2 can block DES-induced AHCYL1 expression. Also, we found that knockdown of AHCYL1 expression down-regulates expression of oviduct specific genes and AHCYL1 expression is regulated at the post-transcriptional level by specific miRNAs. These results strongly suggest that estrogen-mediated AHCYL1 gene expression plays a crucial role in growth, differentiation and function of the hen oviduct. Also, our results will be useful for understanding the fundamental mechanism(s) of estrogen action responsible for development of hen oviduct. This research was funded by the World Class University (WCU) program (R31-10056), Basic Science Research Program (2010-0013078) through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science, and Technology and by the Next-Generation BioGreen 21 Program (No.PJ008142), Rural Development Administration, Republic of Korea.
Long-term ultraviolet (UV) exposure accelerates the phenomenon of skin photo-aging by activating collagenase and elastase. In this study, we aimed to investigate the effects of a combination of grapefruit and rosemary extracts (cG&Re) on UVB-irradiated damage in HaCaT cells and dorsal mouse skin. In HaCaT cells, cG&Re recovered UVB-reduced cell viability and inhibited protein expression of mitogen-activated protein kinases (MAPKs), such as extracellular signal-regulated kinases (p-Erk), c-Jun N-terminal kinases (p-JNK), and a class of MAPKs (p-P38). Also, cG&Re suppressed UVB-induced collagen and elastin degradation by decreasing matrix metalloproteinases (MMPs) and nuclear factor kappa light chain enhancer of activated B cells (NF-κB) expression, which is a transcription factor. Similar results were observed in dorsal mouse skin. Taken together, our data indicate that cG&Re prevent UVB-induced skin photo-aging due to collagen/elastin degradation via activation of MAPKs, MMPs, and the NF-κB signaling pathway in vitro and in vivo.
Aralia cordata (A. cordata), which belongs to Araliaceae, is a perennial herb widely distributed in East Asia. We evaluated the anti-inflammatory effect of stems (AC-S), roots (AC-R) and leaves (AC-L) extracted with 100% methanol of A. cordata and elucidated the potential signaling pathway in LPS-stimulated RAW264.7 cells. The AC-L showed a strong anti-inflammatory activity through inhibition of NO production. AC-L dose-dependently inhibited NO production by suppressing iNOS, COX-2 and IL-β expression in LPS-stimulated RAW264.7 cells. AC-L inhibited the degradation and phosphorylation of IκB-α, which donated to the inhibition of p65 nuclear accumulation and NF-κB activation. Furthermore, AC-L suppressed the phosphorylation of ERK1/2 and p38. These results suggested that AC-L may utilize anti-inflammatory activity by blocking NF-κB and MAPK signaling pathway and indicated that the AC-L can be used as a natural anti-inflammatory drugs.