목적: 본 연구는 안경수건에 함유된 은나노 입자의 항균효과를 연구하기 위해 수행되었다. 방법: 은나노 입자가 함유된 안경수건과 함유되지 않은 안경수건의 세균수를 비교하였다. 결과: 은나노입자가 함유된 안경수건에서 뚜렷한 세균수의 감소가 관찰되었으며, 이 결과는 안경렌즈에 존재하는 세균에 대해 은나노 입자가 높은 항균성을 가짐을 의미한다. 결론: 가까운 미래에 나노기술을 이용한 항균작용 안경수건의 개발이 기대된다.
Silver particles were synthesized from silver nitrate by homogeneous precipitation and chemical reduction methods involving the intermediate silver cyanate. The obtained silver particles were characterized by XRD, SEM, TEM, and BET. Urea which could prevent the agglomeration of the reduced silver particles was used as a homogeneous precipitator. The spherical silver particles with average particle diameter of 100 nm were obtained under the optimum reaction conditions. The optimum synthetic conditions were found as follows: reaction temperature , reaction time 60 min, concentration of silver nitrate mol, urea mol, and sodium citrate mol. The phase of obtained silver particles was crystalline state and the silver particles were relatively dense, which had the surface area of .
Bioaerosols become a more noticed and important problem in indoor air quality (IAQ) control. In this study, we investigated antibacterial effects of silver nano-particles on Escherichia coli, the common Gram negative bacteria and Staphylococcus aureus, the well-mown Gram positive bacteria under aerosol conditions. The bioaerosols containing each bacterial culture were contacted with silver nano-particles sprayed in a closed chamber. Experimental results showed that the silver nano-particles had strong antibacterial activity against E. coli and S. aureus, respectively. As anticipated, high antibacterial activity was found at a high silver concentration and a long the contact time. It was also found that the bactericidal rate decreased with time due to the aggregation of silver nano-particles. Overall, the experimental finding suggested that silver nano-particles could be successfully applied to improve indoor air quality.