This study is aimed to separation propylene and propane using membrane process. Membrane-based gas separation enables a chemical process to be low-energy consuming, if high olefin selective membrane is developed. In this study, facilitated transport membrane (FTM) is used for propylene/ propane separation. We prepared FTM module using PVP/AgBF4/TCNQ composite membrane on top of hollow fiber membrane. We developed simulation program predicting the membrane separation properties under operation conditions. Separation properties of FTM module for propylene and propane were obtained from the simulation program based on the pure gas permeation data. Based on the these results, it is predicted that an one-stage membrane process provides 99.5% of propylene at permeate side from a binary gas mixture of 95 vol% C3H6/5 vol% C3H8 supplied as a feed gas.
In this study, an enthalpy exchanger was coated by silver nano particles via spark discharge method and its antimicrobial and heat exchange efficiencies were evaluated. A method utilizing thermophoretic force was used to improve coating efficiency. Four spark discharge systems were parallel connected and generated silver nano aerosol particles (number concentration of 1.65×108 particles/cc, mode diameter of 31 nm). The coating efficiency was evaluated according to various face velocities (V=0.25~1 m/s) and temperature gradients ((Thot-Tcold)/Thot=0~0.09). The maximum coating efficiency was 90.8 % when the face velocity was 0.25 m/s and the temperature gradient was 0.09 (Thot=30℃, Tcold=2℃). Silver nano particles were coated onto the enthalpy exchange element and two different coating amounts of silver nano particles (0.11 ㎍/cm3 , 0.22 ㎍/cm3 ) were tested. For evaluation of antimicrobial efficiency, the suspension test method with E. coli was used. After the suspension test method, CFU(colony forming unit)s of each test sample were counted and colony ratio was calculated. The colony ratio was decreased more quickly when the amount of coated silver particles was increased. When the contact time between each sample and suspension was over 3 hours, antimicrobial efficiencies of coated samples were more over 99.9 % for both amount of silver nano particle(0.11 ㎍/cm3 , 0.22 ㎍/cm3 ). The coating of silver nano particles did not affect the heat exchange efficiency.
Silver particles were synthesized from silver nitrate by homogeneous precipitation and chemical reduction methods involving the intermediate silver cyanate. The obtained silver particles were characterized by XRD, SEM, TEM, and BET. Urea which could prevent the agglomeration of the reduced silver particles was used as a homogeneous precipitator. The spherical silver particles with average particle diameter of 100 nm were obtained under the optimum reaction conditions. The optimum synthetic conditions were found as follows: reaction temperature , reaction time 60 min, concentration of silver nitrate mol, urea mol, and sodium citrate mol. The phase of obtained silver particles was crystalline state and the silver particles were relatively dense, which had the surface area of .