Sm-16.7wt%Co alloy powders were prepared by high energy ball milling under the conditions of various milling time and the content of process control agent (PCA), and their microstructure and magnetic properties were investigated to establish optimum processing conditions. The initial powders employed showed irregular shape and had a size ranging from 5 to . After milling for 5 h, the shape of powders changed to round shape and their mean powder size was approximately , which consisted of the agglomerated nano-sized particles with 15 nm in diameter. The coercivity was reduced with increasing the milling time, whereas the saturation magnetization increased. As the content of PCA increased, the powder size minutely decreased to approximately at the PCA content of 10 wt%. The XRD patterns showed that the main diffraction peaks disappeared apparently after milling, indicating the formation of amorphous structure. The measured values of coercivity were almost unchanged with increasing the content of PCA.
증착법을 이용하여 Sm(Co1-xFex) 및 Sm2(Co1-xFex)17(X=0, 0.3,0.5,0.7)박막을 제작하여 조성변화 및 열처리 온도 변화에 따른 자기적 성질의 변화에 대해 검토 하였다. Fe의 양이 증가 할 수록 포화자화 값은 증가 하지만 각형비는 감소하였고 보자력도 약간 감소하는 경향을 보였다. Sm(Co0.5Fe0.5)5 조성박막의 경우, 800˚C, 20분 열처리에 의해 약 6.1MGOe의 (BH)max을 보였다. 본 박막자석의 자기적 성질의 증대를 위해서는 시료제작 방법의 개선이 필요하다고 사료 된다.