검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 6

        1.
        2024.11 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Iron selenides with high capacity and excellent chemical properties have been considered as outstanding anodes for alkali metal-ion batteries. However, its further development is hindered by sluggish kinetics and fading capacity caused by volume expansion. Herein, a series of FeSe2 nanoparticles (NPs)-encapsulated carbon composites were successfully synthesized by tailoring the amount of Fe species through facile plasma engineering and followed by a simple selenization transformation process. Such a stable structure can effectively mitigate volume changes and accelerate kinetics, leading to excellent electrochemical performance. The optimized electrode ( FeSe2@C2) exhibits outstanding reversible capacity of 853.1 mAh g− 1 after 150 cycles and exceptional rate capacity of 444.9 mAh g− 1 at 5.0 A g− 1 for Li+ storage. In Na+ batteries, it possesses a relatively high capacity of 433.7 mAh g− 1 at 0.1 A g− 1 as well as good cycle stability. The plasma-engineered FeSe2@ C2 composite, which profits from synergistic effect of small FeSe2 NPs and carbon framework with large specific surface area, exhibits remarkable ions/electrons transportation abilities during various kinetic analyses and unveils the energy storage mechanism dominated by surface-mediated capacitive behavior. This novel cost-efficient synthesis strategy might offer valuable guidance for developing transition metal-based composites towards energy storage materials.
        4,500원
        2.
        2024.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Na4MnV(PO4)3 (NMVP) cathode materials have attracted significant attention as potential candidates for grid applications due to their distinctive structure and high theoretical capacity. However, their inadequate electronic conductivity compromises both cycling stability and rate capability, presenting a challenge for practical implementation. To address this issue, we employed a strategy involving Zr4+ doping and dual-carbon coating to enhance the electrochemical performance of NMVP. The resulting Na3.8MnV0.8Zr0.2( PO4)3/C/rGO composite demonstrated markedly improved rate capability (71.9 mAh g− 1 at 60 °C) and sustained cyclic stability (84.8% retention at 2 C after 1000 cycles), as validated through comprehensive kinetics assessments. The enhanced performance can be attributed to the expanded Na-ion pathways facilitated by large size ion doping and the improved electronic conductivity enabled by the dual-layer coating.
        4,000원
        3.
        2023.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        As a promising anode for sodium-ion batteries (SIBs), cobalt sulfide ( CoS2) has attracted extensive attention due to its high theoretical capacity, easy preparation, and superior electrochemical activity. However, its intrinsic low conductivity and large volume expansion result in poor cycling ability. Herein, nitrogen-doped carbon-coated CoS2 nanoparticles (N–C@ CoS2) were prepared by a C3N4 soft-template-assisted method. Carbon coating improves the conductivity and prevents the aggregation of CoS2 nanoparticles. In addition, the C3N4 template provides a porous graphene-like structure as a conductive framework, affording a fast and constant transport path for electrons and void space for buffering the volume change of CoS2 nanoparticles. Benefitting from the superiorities, the Na-storage properties of the N–C@CoS2 electrode are remarkably boosted. The advanced anode delivers a long-term capacity of 376.27 mAh g− 1 at 0.1 A g− 1 after 500 cycles. This method can also apply to preparing other metal sulfide materials for SIBs and provides the relevant experimental basis for the further development of energy storage materials.
        4,000원
        4.
        2023.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Transition metal chalcogenides are promising cathode materials for next-generation battery systems, particularly sodium-ion batteries. Ni3Co6S8-pitch-derived carbon composite microspheres with a yolk-shell structure (Ni3Co6S8@C-YS) were synthesized through a three-step process: spray pyrolysis, pitch coating, and post-heat treatment process. Ni3Co6S8@C-YS exhibited an impressive reversible capacity of 525.2 mA h g-1 at a current density of 0.5 A g-1 over 50 cycles when employed as an anode material for sodium-ion batteries. However, Ni3Co6S8 yolk shell nanopowder (Ni3Co6S8-YS) without pitch-derived carbon demonstrated a continuous decrease in capacity during charging and discharging. The superior sodium-ion storage properties of Ni3Co6S8@C-YS were attributed to the pitchderived carbon, which effectively adjusted the size and distribution of nanocrystals. The carbon-coated yolk-shell microspheres proposed here hold potential for various metal chalcogenide compounds and can be applied to various fields, including the energy storage field.
        4,000원
        5.
        2022.12 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Tin-antimony sulfide nanocomposites were prepared via hydrothermal synthesis and a N2 reduction process for use as a negative electrode in a sodium ion battery. The electrochemical energy storage performance of the battery was analyzed according to the tin-antimony composition. The optimized sulfides exhibited superior charge/discharge capacity (770 mAh g-1 at a current density of 100 mA g-1) and stable lifespan characteristics (71.2 % after 200 cycles at a current density of 500 mA g-1). It exhibited a reversible characteristic, continuously participating in the charge-discharge process. The improved electrochemical energy storage performance and cycle stability was attributed to the small particle size, by controlling the composition of the tin-antimony sulfide. By optimizing the tin-antimony ratio during the synthesis process, it did not deviate from the solubility limit. Graphene oxide also acts to suppress volume expansion during reversible electrochemical reaction. Based on these results, tin-antimony sulfide is considered a promising anode material for a sodium ion battery used as a medium-to-large energy storage source.
        4,000원