검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 3

        1.
        2019.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study was performed to determine the effects of soil and building materials on indoor radon concentration. Short-term measurements were made in the underground soil of a building along with the radon emanation rates from the phosphogypsum board used as the interior wall. The radon measurements in the soil were 9,213 Bq/m3 in the B3 level, and 3,765 Bq/m3 in the B4 level. Soil radon concentration in the B4 level was 2.4 times higher than in the B3 level. Indoor radon measurements in 50 different locations in the underground of the building, averaged from 144.3 Bq/m3 (B1), 177.0 Bq/m3 (B2), and 189.2 Bq/m3 (B3) to a high of 210.1 Bq/m3 (B4). Indoor radon concentration was increased from the lower level to the upper level. The radon emanation rates from phosphogypsum were 4,234.1 mBq/m2/h and, 450.4 mBq/kg/h. The measurement results indicated that the phosphogypsum board used as building materials as well as the soil could affect the indoor radon concentration.
        4,000원
        2.
        2018.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The purpose of this study is to implement through the utilization of geographical information that was currently constructed in the development of the radon map creation methodology. In addition, we suggested a model for forecasting radon gas in soil based on the mechanism of radon exhalation from soil. To provide basic data for radon mapping in Korea, we compared the results obtained using the proposed model with the results of a field survey. Based on the comparison, we discussed the feasibility of the proposed model. The soil radon exhalation rate prediction model was built on the first order prediction model in the steady-state based on the law of conversion of mass. To verify the model by comparing the predicted value with a field survey, a grid of 7.5 × 6.3 cm was created at a 1:500,000 map of Korea, and the intersection point of the grid was selected as measurement site. The results showed a low error rate when compared with the previous studies, and it is expected that the model proposed in this study and the currently constructed geogenic information database can be used in combination to map the soil radon gas in Korea.
        4,000원
        3.
        2013.02 KCI 등재 서비스 종료(열람 제한)
        우라늄(238U)의 붕괴과정에서 생성되는 방사성기체인 라돈(222Rn)은 발생원 중 토양에서 85 % 이상으로 토양의 공극률이 클수록 토양 밖으로 방출할 수 있는 가능성이 많은 동위원소이다. 라돈으로부터 인체를 보호하기 위해서 적절한 대책을 세우는데 무엇보다도 정확한 측정기술의 개발이 선행되어야 한다. 이에 본 연구는 고순도게르마늄(HPGe)검출기를 이용한 감마선 분광분석법으로 라돈을 측정할 경우에는 불안정한 자연방사능의 백그라운드 문제를 줄일 수있고, 라듐과 라돈의 딸 핵종들을 방사평형에 이르게 한 후 라돈 농도를 측정하였으며, 토양시료에서의 감마선 방출핵종 및 에너지 스펙트럼을 분석하였다.