검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 5

        1.
        2024.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, ester co-solvents and fluoroethylene carbonate (FEC) were used as low-temperature electrolyte additives to improve the formation of the solid electrolyte interface (SEI) on graphite anodes in lithium-ion batteries (LIBs). Four ester co-solvents, namely methyl acetate (MA), ethyl acetate, methyl propionate, and ethyl propionate, were mixed with 1.0 M LiPF6 ethylene carbonate:diethyl carbonate:dimethyl carbonate (1:1:1 by vol%) as the base electrolyte (BE). Different concentrations were used to compare the electrochemical performance of the LiCoO2/ graphite full cells. Among various ester co-solvents, the cell employing BE mixed with 30 vol% MA (BE/MA30) achieved the highest discharge capacity at − 20 °C. In contrast, mixing esters with low-molecular-weight degraded the cell performance owing to the unstable SEI formation on the graphite anodes. Therefore, FEC was added to BE/MA30 (BE/MA30-FEC5) to form a stable SEI layer on the graphite anode surface. The LiCoO2/ graphite cell using BE/MA30-FEC5 exhibited an excellent capacity of 127.3 mAh g− 1 at − 20 °C with a capacity retention of 80.6% after 100 cycles owing to the synergistic effect of MA and formation of a stable and uniform inorganic SEI layer by FEC decomposition reaction. The low-temperature electrolyte designed in this study may provide new guidelines for resolving low-temperature issues related to LIBs, graphite anodes, and SEI layers.
        4,500원
        2.
        2016.11 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        In order to examine how the solid-liquid interface responds to temperature variation depending on the materials characteristics, i.e. faceted phase or nonfaceted phase, the moving solid-liquid interface of transparent organic material, as a model substance for metallic materials (pivalic acid, camphene, salol, and camphor-50wt% naphthalene) was observed in-situ. Plots of the interface movement distance against time were obtained. The solid-liquid interface of the nonfaceted phase is atomically rough; it migrates in continuous mode, giving smooth curves of the distance-time plot. This is the case for pivalic acid and camphene. It was expected that the faceted phases would show different types of curves of the distance-time plot because of the atomically smooth solid-liquid interface. However, salol (faceted phase) shows a curve of the distance-time plot as smooth as that of the nonfaceted phases. This indicates that the solid-liquid interface of salol migrates as continuously as that of the nonfaceted phases. This is in contrast with the case of naphthalene, one of the faceted phases, for which the solidliquid interface migrates in “stop and go” mode, giving a stepwise curve of the distance-time plot.
        4,000원
        3.
        2004.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In order to investigate the effect on morphology of Rhizopus oryzae and production of lactic acid, various interface materials were used. Morphology of fungal showed sheet and flock when resin was added. The production of lactic acid was increased dramati
        4,000원
        5.
        1999.11 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        결정성장 도중 전류에 의해 고/액 계면에서 발생하는 Peltier 열을 이용하면 온도구배의 증가와 이에 따른 성장속도의 증가 및 결정성의 향상에 기여할 것이라 예상되어, 고/액 계면에서 복합적으로 발생하는 Peltier 효과를 조사하였다. 전류 밀도, 극성 및 온도구배의 변화에 따른 고상과 액상 및 그 계면에서의 온도변화로부터 이론적 추론에 의해 Peltier 열, Thomson 열 및 Joule 열만의 영향으로 분류할 수 있었고, 고상/액상 계에 대한 Peltier 계수 및 Thomson 계수도 구할 수 있었다.
        3,000원