검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 13

        1.
        2021.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The effects of drying temperature on the microstructure of porous W fabricated by the freeze-casting process of tert-butyl alcohol slurry with WO3 powder was investigated. Green bodies were hydrogen-reduced at 800oC for 1 h and sintered at 1000oC for 6 h. X-ray diffraction analysis revealed that WO3 powders were completely converted to W without any reaction phases by hydrogen reduction. The sintered body showed pores aligned in the direction of tertbutyl alcohol growth, and the porosity and pore size decreased as the amount of WO3 increased from 5 to 10v ol%. As the drying temperature of the frozen body increased from -25oC to -10oC, the pore size and thickness of the struts increased. The change in microstructural characteristics based on the amount of powder added and the drying temperature was explained by the growth behavior of the freezing agent and the degree of rearrangement of the solid powder during the solidification of the slurry.
        4,000원
        2.
        2020.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The effect of sublimable vehicles on the pore structure of Cu fabricated by freeze drying is investigated. The 5 vol% CuO-dispersed slurries with camphene and various camphor-naphthalene compositions are frozen in a Teflon mold at -25oC, followed by sublimation at room temperature. After hydrogen reduction at 300oC and sintering at 600 °C, the green bodies of CuO are completely converted to Cu with various pore structures. The sintered samples prepared using CuO/camphene slurries show large pores that are aligned parallel to the sublimable vehicle growth direction. In addition, a dense microstructure is observed in the bottom section of the specimen where the solidification heat was released, owing to the difference in the solidification behavior of the camphene crystals. The porous Cu shows different pore structures, such as dendritic, rod-like, and plate shaped, depending on the composition of the camphornaphthalene system. The change in pore structure is explained by the crystal growth behavior of primary camphor and eutectic and primary naphthalene. Keywords: Porous Cu, Pore structure
        4,000원
        3.
        2018.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        A unique porous material with controlled pore characteristics can be fabricated by the freeze-drying process, which uses the slurry of organic material as the sublimable vehicle mixed with powders. The essential feature in this process is that during the solidification of the slurry, the dendrites of the organic material should repel the dispersed particles into the interdendritic region. In the present work, a model experiment is attempted using some transparent organic materials mixed with glass powders, which enable in-situ observation. The organic materials used are camphor-naphthalene mixture (hypo- and hypereutectic composition), salol, camphene, and pivalic acid. Among these materials, the constituent phases in camphor-naphthalene system, i.e. naphthalene plate, camphor dendrite, and camphornaphthalene eutectic exclusively repel the glass powders. This result suggests that the control of organic material composition in the binary system is useful for producing a porous body with the required pore structure.
        3,000원
        4.
        2016.11 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        In order to examine how the solid-liquid interface responds to temperature variation depending on the materials characteristics, i.e. faceted phase or nonfaceted phase, the moving solid-liquid interface of transparent organic material, as a model substance for metallic materials (pivalic acid, camphene, salol, and camphor-50wt% naphthalene) was observed in-situ. Plots of the interface movement distance against time were obtained. The solid-liquid interface of the nonfaceted phase is atomically rough; it migrates in continuous mode, giving smooth curves of the distance-time plot. This is the case for pivalic acid and camphene. It was expected that the faceted phases would show different types of curves of the distance-time plot because of the atomically smooth solid-liquid interface. However, salol (faceted phase) shows a curve of the distance-time plot as smooth as that of the nonfaceted phases. This indicates that the solid-liquid interface of salol migrates as continuously as that of the nonfaceted phases. This is in contrast with the case of naphthalene, one of the faceted phases, for which the solidliquid interface migrates in “stop and go” mode, giving a stepwise curve of the distance-time plot.
        4,000원
        5.
        2016.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study is performed to fabricate a Ti porous body by freeze drying process using titanium hydride (TiH2) powder and camphene. Then, the Ti porous body is employed to synthesize carbon nanotubes (CNTs) using thermal catalytic chemical vapor deposition (CCVD) with Fe catalyst and methane (CH4) gas to increase the specific surface area. The synthesized Ti porous body has 100 μm-sized macropores and 10-30 μm-sized micropores. The synthesized CNTs have random directions and are entangled with adjacent CNTs. The CNTs have a bamboo-like structure, and their average diameter is about 50 nm. The Fe nano-particles observed at the tip of the CNTs indicate that the tip growth model is applicable. The specific surface area of the CNT-coated Ti porous body is about 20 times larger than that of the raw Ti porous body. These CNT-coated Ti porous bodies are expected to be used as filters or catalyst supports.
        4,000원
        6.
        2015.11 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Porous W with spherical and directionally aligned pores was fabricated by the combination of sacrificial fugitives and a freeze-drying process. Camphene slurries with powder mixtures of WO3 and spherical PMMA of 20 vol% were frozen at −25 oC and dried for the sublimation of the camphene. The green bodies were heat-treated at 400 oC for 2 h to decompose the PMMA; then, sintering was carried out at 1200 oC in a hydrogen atmosphere for 2 h. TGA and XRD analysis showed that the PMMA decomposed at about 400 oC, and WO3 was reduced to metallic W at 800 oC without any reaction phases. The sintered bodies with WO3-PMMA contents of 15 and 20 vol% showed large pores with aligned direction and small pores in the internal walls of the large pores. The pore formation was discussed in terms of the solidication behavior of liquid camphene with solid particles. Spherical pores, formed by decomposition of PMMA, were observed in the sintered specimens. Also, microstructural observation revealed that struts between the small pores consisted of very fine particles with size of about 300 nm.
        4,000원
        7.
        2015.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The effect of sublimable vehicle composition in the camphor-naphthalene system on the pore structure ofporous Cu-Ni alloy is investigated. The CuO-NiO mixed slurries with hypoeutectic, eutectic and hypereutectic compo-sitions are frozen into a mold at -25oC. Pores are generated by sublimation of the vehicles at room temperature. Afterhydrogen reduction at 300oC and sintering at 850oC for 1 h, the green body of CuO-NiO is completely converted toporous Cu-Ni alloy with various pore structures. The sintered samples show large pores which are aligned parallel to thesublimable vehicle growth direction. The pore size and porosity decrease with increase in powder content due to thedegree of powder rearrangement in slurry. In the hypoeutectic composition slurry, small pores with dendritic morphologyare observed in the sintered Cu-Ni, whereas the specimen of hypereutectic composition shows pore structure of plateshape. The change of pore structure is explained by growth behavior of primary camphor and naphthalene crystals dur-ing solidification of camphor-naphthalene alloys.
        4,000원
        8.
        2015.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Porous W with controlled pore structure was fabricated by thermal decomposition and hydrogen reduction process of PMMA beads and WO3 powder compacts. The PMMA sizes of 8 and 50 μm were used as pore forming agent for fabricating the porous W. The WO3 powder compacts with 20 and 70 vol% PMMA were prepared by uniaxial pressing and sintered for 2 h at 1200oC in hydrogen atmosphere. TGA analysis revealed that the PMMA was decomposed at about 400oC and WO3 was reduced to metallic W at 800oC. Large pores in the sintered specimens were formed by thermal decomposition of spherical PMMA, and their size was increased with increase in PMMA size and the amount of PMMA addition. Also the pore shape was changed from spherical to irregular form with increasing PMMA contents due to the agglomeration of PMMA in the powder mixing process.
        4,000원
        9.
        2015.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, titanium(Ti) meshes and porous bodies are employed to synthesize carbon nanotubes(CNTs) using methane(CH4) gas and camphene solution, respectively, by chemical vapor deposition. Camphene is impregnated into Ti porous bodies prior to heating in a furnace. Various microscopic and spectroscopic techniques are utilized to analyze CNTs. It is found that CNTs are more densely and homogeneously populated on the camphene impregnated Ti-porous bodies as compared to CNTs synthesized with methane on Ti-porous bodies. It is elucidated that, when synthesized with methane, few CNTs are formed inside of Ti porous bodies due to methane supply limited by internal structures of Ti porous bodies. Ti-meshes and porous bodies are found to be multi-walled with high degree of structural disorders. These CNTs are expected to be utilized as catalyst supports in catalytic filters and purification systems.
        4,000원
        10.
        2014.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The 304 stainless steel powders were prepared by high energy ball milling and subsequently sintered byspark plasma sintering, and the microstructural characteristics and micro-hardness were investigated. The initial size ofthe irregular shaped 304 stainless steel powders was approximately 42 µm. After high energy ball milling at 800 rpmfor 5h, the powders became spherical with a size of approximately 2 µm, and without formation of reaction compounds.From TEM analysis, it was confirmed that the as-milled powders consisted of the aggregates of the nano-sized particles.As the sintering temperature increased from 1073K to 1573K, the relative density and micro-hardness of sintered sampleincreased. The sample sintered at 1573K showed the highest relative density of approximately 95% and a micro-hard-ness of 550 Hv.
        4,000원
        11.
        2014.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This paper describes the surface modification effect of a Ti substrate for improved dispersibility of the cat-alytic metal. Etching of a pure titanium substrate was conducted in 50% H₂SO₄, 50˚C for 1h-12h to observe the sur-face roughness as a function of the etching time. At 1h, the grain boundaries were obvious and the crystal grains weredistinguishable. The grain surface showed micro-porosities owing to the formation of micro-pits less than 1 µm in diam-eter. The depths of the grain boundary and micro-pits appear to increase with etching time. After synthesizing the cat-alytic metal and growing the carbon nano tube (CNT) on Ti substrate with varying surface roughness, the distributiontrends of the catalytic metal and grown CNT on Ti substrate are discussed from a micro-structural perspective.
        4,000원
        12.
        2013.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Freeze drying for porous Mo was accomplished by using MoO3 powder as the source and camphor-naph- thalene eutectic system as the sublimable material. Eutectic composition of camphor-naphthalene slurries with the initial MoO3 content of 5 vol%, prepared by milling at 55o C with a small amount of oligomeric dispersant, was frozen at -25o C. The addition of dispersant showed improvement of dispersion stability in slurries. Pores were generated subse- quently by sublimation of the camphor-naphthalene during drying in air for 48 h. To convert the MoO3 to metallic Mo, the green body was hydrogen-reduced at 750o C, and sintered at 1100o C for 2 h. The sintered samples, frozen by heated Teflon cylinder, showed large pores with the size of about 40 µm which were aligned parallel to the sublimable vehicles growth direction. The formation of unidirectionally aligned pores is explained by the rejection and accumulation of solid particles in the serrated solid-liquid interface.
        4,000원
        13.
        1999.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        A study was made on the fabrication of nanostructured Fe-Co powders by mechanical alloying and their magnetic properties. Microstrural development during the process of MA was inverstigated by means of X-ray diffraction, differential thermal analyzer, scanning electron microscopy and transmission electron microscopy. The magnetic properties of NS Fe-Co powders were evaluated through the measurements of the saturation magnetization as well as the coercivity . The average grain size calculated from line braodening in XRD peak was about 10nm or less and confirmed by TEM. In this experiment, two different milling methods (cycle opertion and conventional milling) were used. Cycle operation had an advantage over the conventional milling method in that more refined powders can be obtained. Solid state alloying of the components was confirmed from both the change of the saturation magnetization and the change of lattice parameter with Co contentration. Maxium was obtained at the composition of 30at.%Co. Relatively high coercivities of 10~150e were obtained for the compositions investigated, and this seems to be due to the high amount of internal strain introduced during milling.
        4,000원