Osteoblastoma(OB) is a rare tumor of bone representing less than 1 % of all tumors of the maxillofacial region. The lesion usually appears in vertebral column, sacrum, long bones but rare in mandible or maxilla. The lesion occurs most commonly at age from 3 to 78 years with the mean age of 22-23 years. In this article, we report one case of OB occurred in mandible. With clinical examination and radiological diagnosis, preliminary diagnosis was made as Fibro-osseous lesion, osteomyelitis or cementoblastoma. Under general anesthesia, associated tooth was extracted and excisional biopsy was done. After microscopic examination, it was diagnosed as OB. The patients which we presented did not complain any specific complications, and showed good prognosis.
Central odontogenic fibroma(COF) is an extremely rare benign tumor that accounts for 0.1% of all odontogenic tumor. COF is regarded by the World Health Organization(WHO) as a benign odontogenic neoplasm derived from mesenchymal odontogenic tissue. The lesion occurs most commonly in the mandible and patients ranging in age from11 to 80years with mean age of 34years. In this article, we report two case of COF. Case I was associated odontoma and impacted tooth. Odontoma and impacted tooth was removal under general anesthesia. After microscopic examination, finally we diagnosis this lesion as COF. Patients of case II showed radiolucent lesion at the mandible. Lesion was enucleated under general anesthesia. After microscopic examination, finally we diagnosis this lesion as COF. The patients which we presented did not complain any specific complications, showed good prognosis.
The effects of the heat treatment temperature and of the atmosphere on the dehydrogenation and hydrogen reduction of ball-milled TiH2-WO3 powder mixtures are investigated for the synthesis of Ti-W powders with controlled microstructure. Homogeneously mixed powders with refined TiH2 particles are successfully prepared by ball milling for 24 h. X-ray diffraction (XRD) analyses show that the powder mixture heat-treated in Ar atmosphere is composed of Ti, Ti2O, and W phases, regardless of the heat treatment temperature. However, XRD results for the powder mixture, heat-treated at 600oC in a hydrogen atmosphere, show TiH2 and TiH peaks as well as reaction phase peaks of Ti oxides and W, while the powder mixture heat-treated at 900oC exhibits only XRD peaks attributed to Ti oxides and W. The formation behavior of the reaction phases that are dependent on the heat treatment temperature and on the atmosphere is explained by thermodynamic considerations for the dehydrogenation reaction of TiH2, the hydrogen reduction of WO3 and the partial oxidation of dehydrogenated Ti.
Porous W with spherical and directionally aligned pores was fabricated by the combination of sacrificial fugitives and a freeze-drying process. Camphene slurries with powder mixtures of WO3 and spherical PMMA of 20 vol% were frozen at −25 oC and dried for the sublimation of the camphene. The green bodies were heat-treated at 400 oC for 2 h to decompose the PMMA; then, sintering was carried out at 1200 oC in a hydrogen atmosphere for 2 h. TGA and XRD analysis showed that the PMMA decomposed at about 400 oC, and WO3 was reduced to metallic W at 800 oC without any reaction phases. The sintered bodies with WO3-PMMA contents of 15 and 20 vol% showed large pores with aligned direction and small pores in the internal walls of the large pores. The pore formation was discussed in terms of the solidication behavior of liquid camphene with solid particles. Spherical pores, formed by decomposition of PMMA, were observed in the sintered specimens. Also, microstructural observation revealed that struts between the small pores consisted of very fine particles with size of about 300 nm.
The synthesis of NiTi alloy powders by hydrogen reduction and dehydrogenation process of NiO and TiH2 powder mixtures is investigated. Mixtures of NiO and TiH2 powders are prepared by simple mixing for 1 h or ball milling for 24 h. Simple-mixed mixture shows that fine NiO particles are homogeneously coated on the surface of TiH2 powders, whereas ball milled one exhibits the morphology with mixing of fine NiO and TiH2 particles. Thermogravimetric analysis in hydrogen atmosphere reveals that the NiO and TiH2 phase are changed to metallic Ni and Ti in the temperature range of 260 to 290oC and 553 to 639oC, respectively. In the simple-mixed powders by heat-up to 700oC, agglomerates with solid particles and solidified liquid phase are observed, and the size of agglomerates is increased at 1000oC. From the XRD analysis, the presence of liquid phase is explained by the formation and melting of NiTi2 intermetallic compound due to an exothermic reaction between Ni and Ti. The simple-mixed powders, heated to 1000oC, lead to the formation of NiTi phase but additional Ni-, Ti-rich and Ti-oxide phases. In contrast, the microstructure of ball-milled powders is characterized by the neck-grown particles, forming Ni3Ti, Ti-oxide and unreacted Ni phase.
In this paper, a soft robotic arm which can prevent impact injury during human-robot interaction is introduced. Two degrees of freedom joint are required to realize free movement of the robotic arm. A robotic joint concept with a single degree of freedom is presented using simple inflatable elements, and then extended to form a robotic joint with two degrees of freedom joint using similar manufacturing methods. The robotic joint with a single degree of freedom has a joint angle of 0° bending angle when both chamber are inflated at equal pressures and maximum bending angles of 28.4° and 27.1° when a single chamber if inflated. The robotic joint with two degrees of freedom also has a bending angle of 0° in both direction when all three chambers are inflated at equal pressures. When either one or two chambers were pressurized, the robotic joint performed bending towards the uninflated chambers.