리튬이온전지는 친환경적이고 우수한 전지 성능덕분에 배터리 산업의 핵심으로 자리 잡았으며, 이에 따라 수요가 급증하고 있다. 그러나, 리튬이온전지의 수요증가는 리튬과 광물자원들의 공급문제를 초래하며, 수명이 다한 폐 리튬이온전지의 폐기방안이 아직 마련되지 않아 환경적 문제를 발생시킨다. 이러한 문제를 해결하기 위해 폐 리튬이온전지를 재활용하는 연구가 진행되고 있으며, 그 중에서도 폐 리튬이온전지에서 폐 양극 소재를 추출하여 재활용하는 다이렉트 리사이클링 연구가 주목받고 있다. 그러나, 폐 양극 소재는 오랜 충/방전으로 인해 구조적 붕괴(열화)가 발생한 상태로, 새로운 리튬이온전지에 적용을 위해서는 리튬이온전지 사용 전의 구조 즉, 층상구조로의 회복이 필요하다. 본 연구에서는 이를 위해 폐 양극 소재(LiNi0.6C0.2Mn0.2O2)가 열역학적으로 층상구조를 형성하는 온도를 분석하기 위해 700 ºC, 800 ºC, 900 ºC 범위에서 XRD를 통해 구조분석을 진행하였다. 폐 양극 소재는 700 ºC와 900 ºC 대비 800 ºC 열처리 시 1.44로 가장 높은 I003/I104 value를 보였다. 또한 800 ºC 열처리 시 0.1 C 기준 비 용량이 171.3 mAh/g으로 가장 높은 것을 확인하였다. 이를 통해 우리는 열역학적으로 층상구조를 형성하는 온도를 800 ºC로 도출하였으며 폐 양극 소재의 구조를 성공적으로 복원하였다.
In this study, an experiment is performed to recover the Li in Li2CO3 phase from the cathode active material NMC (LiNiCoMnO2) in waste lithium ion batteries. Firstly, carbonation is performed to convert the LiNiO, LiCoO, and Li2MnO3 phases within the powder to Li2CO3 and NiO, CoO, and MnO. The carbonation for phase separation proceeds at a temperature range of 600oC~800oC in a CO2 gas (300 cc/min) atmosphere. At 600~700oC, Li2CO3 and NiO, CoO, and MnO are not completely separated, while Li and other metallic compounds remain. At 800 oC, we can confirm that LiNiO, LiCoO, and Li2MnO3 phases are separated into Li2CO3 and NiO, CoO, and MnO phases. After completing the phase separation, by using the solubility difference of Li2CO3 and NiO, CoO, and MnO, we set the ratio of solution (distilled water) to powder after carbonation as 30:1. Subsequently, water leaching is carried out. Then, the Li2CO3 within the solution melts and concentrates, while NiO, MnO, and CoO phases remain after filtering. Thus, Li2CO3 can be recovered.