The objective of this study was to examine the effect of in vitro maturation (IVM) medium, cytochalasin B (CB) treatment during intracytoplasmic sperm injection (ICSI), and electric activation on in vitro development ICSI-derived embryos in pigs. Immature pig oocytes were matured in vitro in medium 199 (M199) or porcine zygote medium (PZM)-3 that were supplemented with porcine follicular fluid, cysteine, pyruvate, EGF, insulin, and hormones for the first 22 h and then further cultured in hormone-free medium for an additional 21~22 h. ICSI embryos were produced by injecting single sperm directly into the cytoplasm of IVM oocytes. The oocytes matured in PZM-3 with 61.6 mM NaCl (low-NaCl PZM-3) tended to decrease (0.05<P<0.1) nuclear maturation when compared with oocytes matured in M199 (76.9% vs. 83.8%) but no significant differences were found in embryo cleavage, blastocyst formation, and mean number of cells in blastocyst (73.8% vs. 74.6%, 11.1% vs. 12.1%, and 28.4 cells vs. 30.1 cells, respectively). The oocyte degeneration was not reduced by CB treatment during ICSI (11.9%) when compared with no treatment control (11.3%) while the treatment showed detrimental effects (P<0.05) on embryonic cleavage (40.0%) and blastocyst formation (1.8%) rates when compared with control (60.0% and 11.5%, respectively). For activation of ICSI oocytes, additional electric stimulus has no positive or negative effect on in vitro development of preimplantation stage ICSI porcine embryos. Our results demonstrate that CB treatment during ICSI inhibits embryonic development of ICSI oocytes and additional electric activation after ICSI has no effect in improving ICSI embryonic development in pigs. Further studies are needed to improve ICSI efficiency by investigating factors influencing embryonic development after ICSI in pigs.
The purpose of this study was to investigate the effects of the collection time, co-culture and sperm penetration of canine oocytes on in vitro maturation and fertilization. The oocytes were cultured in TCM-199 media containing hormonal supplements (10% FCS, 10 IU/ml HCG, 10 IU/ml PMSG) at 5% CO2, 95% air, 38℃. The in vitro maturation rate to MⅡ stage of in vitro oocytes recovered from ovaries that collected at follicular, luteal and inactive phases of the reproductive phase for 44~72 hrs were 19.2%, 12.2%, and 6.0%, respectively. Follicular phases oocytes had a significantly higher in vitro maturation rate than oocytes collected at luteal and anestrus stage (p<0.05). The in vitro maturation rates to the MII stage of canine oocytes after 48 hrs of culture with glutathione, pyruvate, or glutathione + pyruvate were 12.5%, 10.7%, and 17.5%, respectively. This was higher than that in both alone or the combination of the two compared to the control group (19.0%). The sperm penetration rates of in vitro matured oocytes by fresh and frozen semen were 29/80 (36.3%) and 18/80 (22.5%), respectively. Although there are limited reports about canine oocytes co-culture and in vitro fertilization, our results on in vitro maturation is comparable to the results from other researches.
The aim of this study is to investigate the effect of porcine epididymal fluid (pEF) on in vitro-maturation and subsequent fertilization of porcine follicular oocytes. Porcine cumulus-oocytes complexes retrieved from antral follicles were cultured in tissue culture medium (TCM)-199 supplemented with pEF of different concentrations. At 48 h after culture, development of oocytes to germinal vesicle (GV) breakdown, metaphase I, anaphase-telophase I, and metaphase II were examined. Significant (p<0.05) increase in the proportion of oocytes developed to MII stage was observed in oocytes cultured in pEF-containing TCM-199 than in oocytes cultured in pEF-free TCM-199 (46.2% vs 16.7%), which was a dose-dependent manner. Subsequently, the proportion of monospermic fertilization were significantly (p<0.05) increased in oocytes cultured in the TCM supplemented with pEF than those cultured in pEF-free TCM-199 (51.0% vs 24.1%). In the second series of experiment, the percentage of MII oocytes was significantly (p<0.05) increased after exposure of oocytes to pEF during the first 22 h period of culture than after exposure of oocytes to pEF during the next 24 h of culture, while no significant difference in the percentage of monospermy was observed. The results of this study demonstrate that pEF contains at least enhancing component(s) for nuclear maturation.