In contrast to conventional silk fibroin, spider silk's potential as a scaffold material for tissue engineering is examined in this work. The remarkable qualities of spider silk are being researched for use in making films for tissue regeneration. In comparison to silk fibroin films, the study's analysis of orb-web spider Trichonephila clavata films highlights their improved cell adhesion and nanofibrous network structure. Tests for solubility substantiate the durability of spider silk films, while in vitro investigations demonstrate low cytotoxicity and enhance cellular viability. The conclusion highlights the exceptional properties of spider silk, which make it a viable option for tissue engineering applications and a step forward for in vitro cell culture and regenerative bioengineering.
Spider silk, which combines strength and lightness, emerges as an ideal candidate for non-woven fabric production. Unlike synthetic polymeric materials, silk are nontoxic and biocompatible and cause no allergic reaction. In particular, the dragline silk produced by the golden orb-web spider, Trichoephila clavata, is renowned for its superior strength and exceptional mechanical properties compared to other spider silks. Non-woven fabrics have found extensive applications in diverse industrial sectors, owing to their advantageous qualities such as breathability, durability, and lightweight characteristics. Natural dragline silk was extracted from the orb-weaving spider and subsequently randomly arranged. Compressing into a sheet-plane form, in addition to inducing the formation of water-resistant, stable β-sheet structures through ethanol vapor treatment or direct treatment, preserved the morphology of the silk fibers. The resulting non-woven sheets were analyzed with an field emission scanning electron microscope (FESEM) to observe their fine structures and mesh size were measured through image analysis.
Spider silks hold great potential as biomaterials with extraordinary properties. Here we report cloning and characterization of the major ampullate silk protein gene from the spider Araneus ventricosus. A cDNA coding for the partial major ampullate silk protein (AvMaSp) was cloned from A. ventricosus. Analysis of the cDNA sequence shows that AvMaSp consists of 240 amino acids of a repetitive region and 99 amino acids of a C-terminal non-repetitive domain. The peptide motifs found in spider major ampullate silk proteins, (A)n, (GA)n, and (GGX)n, were conserved in the repetitive region of AvMaSp. Phylogenetic analysis further confirmed that AvMaSp belongs to the spider major ampullate spidroin proteins. The AvMaSp-R cDNA, which contains sequences encoding for 240 amino acids of a repetitive domain, was expressed as a 22 kDa polypeptide of soluble form in baculovirus-infected insect cells. Recombinant AvMaSp-R was degraded abruptly by trypsin. However, AvMaSp-R was stable at 100 °C for at least 30 min. Additionally, the AvMaSp-R was stable at various pH values from 2 to 12 for at least 1 h. Taken together, our findings provide the molecular structure and biochemical property for A. ventricosus major ampullate silk protein as a biomaterial.
Fibroin silk proteins from spider or silkworm are attractive biomaterials that are of particular biotechnological interest for industrial and medical purposes because of their unique physical and mechanical properties. In this study, we generated and characterized the transgenic rice plant expressing a spider silk protein. Spider silks have great potential as biomaterials with extraordinary properties. Here, we report the cloning and characterization of the major ampullate silk protein gene from the spider Araneus ventricosus. A cDNA encoding the partial major ampullate silk protein (AvMaSp) was cloned from A. ventricosus. An analysis of the cDNA sequence shows that AvMaSp consists of a 240 amino acid repetitive region and a 99 amino acid C-terminal non-repetitive domain. The peptide motifs that were found in the spider major ampullate silk proteins, (A)n, (GA)n, and (GGX)n, were conserved in the repetitive region of AvMaSp. Phylogenetic analysis further confirmed that AvMaSp belongs to the spider major ampullate spidroin family of proteins. Recombinant AvMaSp-R was degraded abruptly by trypsin. However, AvMaSp-R was stable at 100 °C for at least 30 min. Additionally, the AvMaSp-R was stable at pH values from 2 to 12 for at least 1 h. Taken together, our findings describe the molecular structure and biochemical properties of the A. ventricosus major ampullate silk protein and demonstrate its potential as a biomaterial.
In this study, we generated and characterized the transgenic rice plant expressing a spider silk protein. Spider silks have great potential as biomaterials with extraordinary properties. We report the cloning and characterization of the major ampullate silk protein gene from the spider Araneus ventricosus. A cDNA encoding the partial major ampullate silk protein (AvMaSp) was cloned from A. ventricosus. An analysis of the cDNA sequence shows that AvMaSp consists of a 240 amino acid repetitive region and a 99 amino acid C-terminal non-repetitive domain. The peptide motifs that were found in the spider major ampullate silk proteins, (A)n, (GA)n, and (GGX)n, were conserved in the repetitive region of AvMaSp. Phylogenetic analysis further confirmed that AvMaSp belongs to the spider major ampullate spidroin family of proteins. The AvMaSp-R cDNA, which encodes the 240 amino acid repetitive domain, was expressed as a soluble 22 kDa polypeptide in baculovirus-infected insect cells. To produce transgenic rice plant with high contents of glycine and alanine, the prolamin promoter-driven AvDrag was introduced into rice plant via agrobacterium tumefaciens-mediated gene transformation. The introduction and copy number of the AvDrag gene in transgenic rice plants were determined by PCR and Southern blot analysis. AvDrag expression in transgenic rice seeds was examined by Northern blot and Western blot analysis. Immunofluorescence staining with the AvDrag antiserum revealed that the recombinant AvDrag protein were localized in transgenic rice seed. Furthermore, the amino acid content analysis showed that transgenic rice seeds were greatly increased in glycine and alanine as compared to controls
In this study, we generated and characterized the transgenic rice plant expressing a spider silk protein. A cDNA coding for the C-terminus of spider dragline silk protein (AvDrag) was cloned from the spider Araneus ventricosus. Analysis of the cDNA sequence shows that the C-terminus of AvDrag consists of 165 amino acids of are petitive region and 99 amino acids of a C-terminalnon-repetitive region. The peptide motifs found in spider drag line silk proteins, GGX and An, were conserved in the repetitive region of AvDrag. The AvDrag cDNA was expressed as a 28kDa polypeptide in baculovirus-infected insect cells. To produce transgenic rice plant with high contents of glycine and alanine, the prolamin promoter-driven AvDrag was introduced into rice plant via Agrobacteriumtumefaciens-mediated gene transformation. Because of seeds pecific prolamin promoter, expression of AvDrag protein has been achieved inriceseed. The introduction and copy number of the AvDrag gene in transgenic rice plants were determined by PCR and Southern blot analysis. AvDrag expression in transgenic rice seeds was examined by Northern blot and Western blot analysis. Immuno fluorescence staining with the AvDrag antiserum revealed that the recombinant AvDrag proteins were localized in transgenic rice seeds. Furthermore, the amino acid content analysis showed that transgenic rice seeds were greatly increased in glycine and alanine as compared to controls. The present study is the first to show the expression of spider silk protein in rice seed.