This study prepared a (TiO2-CeO2)/Sr4Al14O25: Eu2+,Dy3+ heterojunction photocatalyst by coating (TiO2-CeO2) nanoparticles on a Sr4Al14O25:Eu,Dy phosphor substrate using a hydrothermal reaction method. The fabricated (TiO2- CeO2)/Sr4Al14O25: Eu2+,Dy3+ composites were characterized with X-ray diffraction (XRD), scanning electron microscope (SEM), transmission electron microscope (TEM), X-ray photo electron spectroscopy (XPS), UV-visible diffuse reflectance spectroscopy (UV/Vis DRS), Brunauer-Emmett-Teller (BET), and Raman spectroscopy. The photocatalytic performance of the (TiO2-CeO2)/Sr4Al14O25: Eu2+,Dy3+ composites was investigated through the decomposition of toluene gas for various ratios of TiO2 to CeO2 (3:7, 5:5, and 7:3) and heat treatment ranging from 300 to 700 °C. The coupling between (TiO2-CeO2) and the highly persistent Sr4Al14O25:Eu2+,Dy3+ phosphor reduced the energy band gap and enhanced visible light absorption. In particular, the 5:5 ratio of TiO2 to CeO2 on Sr4Al14O25:Eu2+,Dy3+ showed excellent photocatalytic performance, decomposing over 85 % of the toluene gas within 150 min even under visible-light irradiation. The results suggest that the CeO2 particles might increase the specific surface area, and effectively suppress the recombination of electrons and holes generated from TiO2, thereby enhancing the photocatalytic reactivity.
A spherical Sr4Al14O25:Eu2+ phosphor for use in white-light-emitting diodes was synthesized using a liquid-state reaction with two precipitation stages. For the formation of phosphor from a precursor, the calcination temperature was 1,100˚C. The particle morphology of the phosphor was changed by controlling the processing conditions. The synthesized phosphor particles were spherical with a narrow size-distribution and had mono-dispersity. Upon excitation at 395 nm, the phosphor exhibited an emission band centered at 497 nm, corresponding to the 4f65d→4f7 electronic transitions of Eu2+. The critical quenching-concentration of Eu2+ in the synthesized Sr4Al14O25:Eu2+ phosphor was 5 mol%. A phosphor-converted LED was fabricated by the combination of the optimized spherical phosphor and a near-UV 390 nm LED chip. When this pc-LED was operated under various forward-bias currents at room temperature, the pc-LED exhibited a bright blue-green emission band, and high color-stability against changes in input power. Accordingly, the prepared spherical phosphor appears to be an excellent candidate for white LED applications.