Since it is impossible to predict earthquakes, they involve more casualties and property damage compared to meteorological disasters such as heavy snow and heat waves, which can be predicted through weather forecasts. This has highlighted the need for seismic design and reinforcement. Recently, the use of composite materials as reinforcement has surged because steel plate reinforcement and section enlargement are likely to result in increased weight and physical damage to structures. This study evaluates the seismic performance of panels created from composite materials, and their guide systems. The specimens were miniature versions of actual steel structures, and displacement loads were applied in the transverse direction. Seismic performance was found to improve when structures were reinforced with seismic panels.
In this study, the performance of a steel-FRP composite bridge safety barrier was evaluated through the vehicle crash test. Glass fiber and polyester resin were used for FRP. The structural strength performance, the passenger protection performance, and the vehicle behavior after crash were evaluated corresponding to the vehicle crash manual. As the result, A steel-FRP composite safety barrier was satisfied with the required performance.
본 논문에서는 컴퓨터 시뮬레이션을 통해 강재-FRP 합성 교량용 방호울타리의 성능을 분석하였다. FRP는 Surface veil, DB 그리고 Roving 섬유로 구성하였다. FRP의 적층을 고려하기 위해 LS-DYNA에서 제공하는 재료모델 MAT58을 사용하였다. 강관과 FRP의 접촉조건을 고려하기 위해 Spot weld 옵션을 사용하였다. 실차충돌 실무 업무편람에 따 라 구조적 강도성능, 탑승자 보호성능 및 충돌 후 차량의 거동에 대한 성능평가를 실시하였다. 강재-FRP 합성 방호 울타리는 성능평가를 만족하였다.
This study is planed to solve the overturning problem and manifestation of tensile cracking of plain concrete piers of railroad bridges. For the overturning problem, earth anchors are used to fix the bottom of a pier to a rock-foundation using prestressing cables. Composite of FRP (Fiber Reinforced Polymer)and Steel Plates (FSP) are attached longitudinally on the surface of the pier to prevent cracking. Then, FRP band strips are wrapped onto the FSPs to provide lateral confinement. Push-over tests in field show that the earth anchors are effective in preventing the overturning of the pier, and that the FSPs and the FRP strips prevent the cracking of concrete and increase the strength in bending.