Researches on the elimination of sulfur and nitrogen oxides with catalysts and absorbents reported many problems related with elimination efficiency and complex devices. In this study, decomposition efficiency of harmful gases was investigated. It was found that the efficiency rate can be increased by moving the harmful gases together with SPCP reactor and the catalysis reactor. Calcium hydroxide(Ca(OH)2), CaO, and TiO2 were used as catalysts. Harmful air polluting gases such as SO2 were measured for the analysis of decomposition efficiency, power consumption, and voltage according to changes to the process variables including frequency, concentration, electrode material, thickness of electrode, number of electrode winding, and additives to obtain optimal process conditions and the highest decomposition efficiency. The standard sample was sulfur oxide(SO2). Harmful gases were eliminated by moving them through the plasma generated in the SPCP reactor and the Ca(OH)2 catalysis reactor. The elimination rate and products were analyzed with the gas analyzer (Ecom-AC,Germany), FT-IR(Nicolet, Magna-IR560), and GC-(Shimazu). The results of the experiment conducted to decompose and eliminate the harmful gas SO2with the Ca(OH)2 catalysis reactor and SPCP reactor show 96% decomposition efficiency at the frequency of 10 kHz. The conductivity of the standard gas increased at the frequencies higher than 20 kHz. There was a partial flow of current along the surface. As a result, the decomposition efficiency decreased. The decomposition efficiency of harmful gas SO2 by the Ca(OH)2 catalysis reactor and SPCP reactor was 96.0% under 300 ppm concentration, 10 kHz frequency, and decomposition power of 20 W. It was 4% higher than the application of the SPCP reactor alone. The highest decomposition efficiency, 98.0% was achieved at the concentration of 100 ppm.
With industrial development, energy demands continue to rise. Fossil fuels release more air pollutants to produce the same amount of energy compared with other types of fuel. The harmful exhaust gas exacerbated by the increasing uses of vehicles also makes a contribution to the worsening of air pollution. Thus there is a need for various processing methods and technologies to eliminate harmful gases such as sulfur oxides released into the air. Researches on the elimination of sulfur and nitrogen oxides with catalysts and absorbents reported many problems due to elimination efficiency and complex devices. In an attempt to supplement them, this study set out to increase the decomposition efficiency of harmful gases by moving them through the plasma generated in the SPCP reactor and the catalysis reactor specially designed and manufactured. The study used calcium hydroxide(Ca (OH)2),CaO,andTiO2 as catalysts. Harmful air polluting gases such as SO2 were measured for decomposition efficiency, power consumption, and voltage according to changes to the process variables including frequency, concentration, electrode material, thickness of electrode, number of electrode winding, and additives to obtain optimal process conditions and the highest decomposition efficiency. The standard sample was sulfur oxide(SO2). Harmful gases were eliminated by moving them through the plasma generated in the SPCP reactor and the Ca(OH)2 catalysis reactor. The elimination rate and products were analyzed with the gas analyzer (Ecom-AC,Germany), FT-IR(Nicolet, Magna-IR560), and GC-(Shimazu). The results of the experiment conducted to decompose and eliminate the harmful gas SO2with the Ca(OH)2 catalysis reactor and SPCP reactor show 96 decomposition efficiency at the frequency of 10kHz. The conductivity of the standard gas increased according to frequency at high voltage of 20 kHz or more. There was a partial flow of current along the surface. As a result, the decomposition efficiency decreased. The use of tungsten electrode resulted in the highest decomposition efficiency by the Ca(OH)2 catalysis reactor and SPCP reactor, and it was followed by the copper and aluminum electrode in the order. As for the impacts of thickness of electrode at electric discharge, the thicker the electrode was, the higher decomposition efficiency became. As for the number of electrode winding, the more it was wound, the higher decomposition efficiency became. The decomposition efficiency of harmful gas SO2 by the Ca(OH)2 catalysis reactor and SPCP reactor was 96.0% under the conditions of 300ppm concentration, 10kHz frequency, and decomposition power of 20W. It was higher than 92% when only the SPCP reactor was used. Decomposition efficiency was the highest at 98.0% when the concentration was 100ppm. As for the effects of additives to fit actual exhaust gases, the more methane (CH4) was added, the higher decomposition efficiency became over 99%. The higher the oxygen concentration was, the higher decomposition efficiency became, as well
In this study, the air pollutant removal such as sulfur oxides was studied. A combination of the plasma discharge in the reactor by the reaction surface discharge reactor Calcium hydroxides catalytic reactor and air pollutants, hazardous gas SOx, changes in gas concentration, change in frequency, the thickness of the electrode, kinds of electrodes and the addition of simulated composite catalyst composed of a variety of gases, including decomposition experiments were performed by varying the process parameters.
The experimental results showed the removal efficiency of 98% in the decomposition of sulfur oxides removal experiment when Calcium hydroxides catalysts and the tungsten(W) electrodes were used. It was increased 3% more than if you do not have the catalytic. If added to methane gas was added the removal efficiency increased decomposition.
In this study, a combination of the plasma discharge in the reactor by the reaction surface discharge reactor complex catalytic reactor and air pollutants, hazardous gas SOx, change in frequency, residence time, and the thickness of the electrode, the addition of simulated composite catalyst composed of a variety of gases, including decomposition experiments were performed by varying the process parameters. 20W power consumption 10kHz frequency decomposition removal rate of 99% in the decomposition of sulfur oxides removal experiment that is attached to the titanium dioxide catalyst reactor experimental results than if you had more than 5% increase. If added to methane gas was added, the removal efficiency increased decomposition, the oxygen concentration increased with increasing degradation rate in the case of adding carbon dioxide decreased.