검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 3

        2.
        2006.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Surface fog coating methods to porous pavements with a polymer, that contains MMA as a main ingredient, are being widely used in Japan and called 'Top-Coat Processes'. They have lots of effects such as to prevention of the pavement void choking, improvement of the water permeability of the pavements and so on. The purpose of this research is to show the characterization of the polymer to optimize the functions of the polymer fog-coat methods. This study focused on the difference of 'wetting' by water among polymers used for the fog coatings, and calculation the surface free energy from the water contact angle on each material. At the end, the water permeability test were conducted using porous asphalt mixtures that were coated with several kinds of polymers. The permeability was also measured on the specimens that were forcibly choked by muddy water and the resistance to choking was compared. It is concluded that the reduction of the surface free energy between water and a polymer improves the life of the permeability functions of porous pavements. Improvement of water permeation capacity and void-blocking controlling effects can be quantitatively evaluated using the interfacial tension (γsl) with water for the coating material (high-viscosity asphalt and hardening resin binder). Consequently, the smaller the γsl of the coating material the higher the water permeation capacity and void-blocking controlling effects of the porous asphalt pavements.
        4,000원
        3.
        2000.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The effect of surface free energy on the positive temperature coefficient (PTC) of carbon black/thermoplastic resin composites was investigated. The thermoplastic resins such as EVA, LDPE, LLDPE and HDPE were used with the addition of 30 wt.% of the carbon black. The surface free energy of the composites was studied in the context of two-liquid contact angle measurements, i.e., deionized water and diiodomethane. It was observed that the resistivity on PTC composites Was greatly increased near the crystalline melting temperature, due to the thermal expansion of polymeric matrix. From the experimental results, it was proposed that the decrease of surface free energy induced by interactions between carbon black surfaces and polymer chains is an important factor to the fabrication of a PTC composite made of carbon black and polymeric matrix.
        4,000원