Antioxidants are food additives that extend the shelf life of food products by preventing lipid rancidity caused by active oxygen. They can either be naturally-derived or manufactured synthetically via chemical synthesis. In this study, method validation of five synthetic antioxidants, namely butylated hydroxyanisole, butylated hydroxytoluene, tertiary butylhydroquinone, propyl gallate, and disodium ethylenediaminetetraacetic acid, was performed using a high performance liquid chromatography–ultraviolet visible detector, and the method applicability was evaluated by analyzing foods containing antioxidants. The coefficient of determination (R2) average was 0.9997, while the limit of detection and limit of quantification were 0.02–0.53 and 0.07–1.61 mg/kg, respectively. The intra and inter-day accuracies and precisions were 83.2±0.7%–98.7±2.1% and 0.1%–5.7% RSD, respectively. Inter-laboratory validation for accuracy and precision was conducted using the Food Analysis Performance Assessment Scheme quality control material. The results satisfied the guidelines presented by the AOAC International. In addition, the expanded uncertainty was less than 16%, as recommended by CODEX. Consequently, to enhance public health safety, the results of this study can be used as basis data for evaluating the intake of synthetic antioxidants and assessing their risks in Korea.
초록 (Abstract) Antithiamin activities of BHA, BHT, PG and TBHQ of synthetic antioxidants on the effect of temperature and pH was determined by means of HPLC. The influence of synthetic antioxidants on the degradation of thiamin was found to be dependent on temperature and pH. The degradation of thiamin was considerably more rapid at pH 7 than pH 4. The influence on the heat of synthetic antioxidants at pH 4 and 38℃ was extremely slight, but the degradation of thiamin at pH 7 was much more rapid at 60℃ than at 38℃. After 24 hours of incubation both PG and TBHQ at pH 7 and 60℃ nearly completely destroyed thiamin. Tests of antithiamin activities showed that TBHQ, which was decomposed completely in 72 hours, was more effective than PG at pH 7 and 38℃, but BHA and BHT hardly had antithiamin activities which was evaluated under various reactions of pH and temperature. Thiamin degradation, at pH 7 and 60℃, was proportional to the concentration of PG. When the ratio of PG to thiamin was increased from 0.15:1 to 2:1, the degradation rate also increased. However, the change between ratio of 1:1 and 2:1 was negligible