This study was conducted to determine the agronomic characteristics of low amylose lines which were derived from induced mutants by T-DNA insertion. The agronomic and physicochemical properties of the low amylose mutants were analyzed and compared with a donor cultivar 'Dongjin' and a low amylose cultivar 'Baekjinju'. The heading date of the low amylose mutants was similar to the donor cultivar 'Dongjin' and yield index of the mutants was 78~92% compared with 'Dongjin'. The amylose content of four mutants in brown rice was ranged from 16.1 to 16.7%. Among low amylose mutants, 'P50-4-4-5' was lower 3.6%(13.3%) than those of 'Dongjin'(16.9%) in amylose content of milled rice. The grain length of 'P50-4-4-5' was similar to the donor cultivar, however, thousand grain weight(18.9g) was lighter than those of 'Dongjin'. The score of alkali digestion in brown rice of 'P50-4-4-5'(5.5) was lower than that of 'Dongjin'(6.8) and similar to 'Baekjinju'(5.8). The gel consistency of 'P50-4-4-5'(84mm) in milled rice exhibited that was longer than 'Dongjin'(76mm) and 'Baekjinju'(81mm). The result of eating quality showed that 'P50-4-4-5'(78.8) was higher than those of 'Dongjin'(60.3) and 'Baekjinju'(67.2). Thus our data suggest that 'P50-4-4-5' will facilitate the development of a new cultivar with low amylose rice.
We have generated 383 independent transgenic lines for genetically modified (GM) rice that contained PsGPD (Glyceraldehyde-3-Phosphate Dehydrogenase), ArCspA (Cold Shock Protein), BrTSR15 (Triple Stress Resistance 15) and BrTSR53 (Triple Stress Resistance 53) genes over-expression constructs under the control of the constitutive (CaMV 35S) promoter. TaqMan copy number assay was determined inserted T-DNA copy number. Also flanking sequence tags (FSTs) analysis was isolated from 203 single copy T-DNA lines of transgenic plants and sequence mapped to the rice chromosomes. In analyzing single copy lines, we identified 157 flanking sequence tags (FSTs), among which 58 (36%) were integrated into genic regions and 97 (62%) into intergenic regions. About 27 putative homozygous lines were obtained through multi-generations of planting, resistance screening and TaqMan copy number assay. To investigate the transgene expression patterns, quantitative real-time PCR analysis was performed using total RNAs from leaf tissue of single copy, intergenic region of T-DNA insertion and homozygous T2 plants. The mRNA expression levels of the examined transgenic rice were significantly increased in all of the transgenic plants. In addition, myc-tagged 35S:BrTSR15 and 35S:BrTSR53 transgenic plants were displayed higher levels of transgene protein. These results may be useful for producing of large-scale transgenic plants or T-DNA inserted mutants in rice.
We have generated 383 independent transgenic lines for genetically modified (GM) rice that contained GPD, UtrCSP, BrTSR15 and BrTSR53 genes overexpression constructs under the control of the constitutive CaMV 35S promoter. TaqMan copy number assay was determined inserted T-DNA copy number. Also FSTs analysis was isolated from 203 single copy T-DNA lines of transgenic plants and sequence mapped to the rice chromosomes. In analyzing single copy lines, we identified 95 FSTs, among which 37 (38.9%) were integrated into genic regions and 58 (61.1%) into intergenic regions. About 27 homozygous lines were obtained through multi-generations of planting, resistance screening and TaqMan copy number assay. To investigate the transgene expression patterns, quantitative real-time PCR analysis was performed using total RNAs from leaf tissue of single copy, intergenic region of T-DNA insertion and homozygous T2 plants. The mRNA expression levels of the examined transgenic rice were significantly increased in all of the transgenic plants. In addition, myc-tagged 35S::BrTSR15 and 35S::BrTSR53 transgenic plants were displayed higher levels of transgene protein than WT plants. These results may be useful for producing of large-scale transgenic plants or T-DNA inserted mutants in rice.
This study was conducted to determine the physicochemical properties of a giant embryo rice 'P47JB-4-B-5-B' derived from the cross between 'P47', a mutant of 'Hwayoung' induced by T-DNA insertion, and 'Junam'. The grain appearance and chemical components of the embryo were analyzed and compared with a donor cultivar, 'Hwayoung'. The proportion of embryo weight to grain weight of 'P47 JB-4-B-5-B' was 2.2 times heavier (6.7%) than that (3.1%) of 'Hwayoung'. Total free amino acid content (75.81 mg/100 g) of 'P47JB-4-B-5-B' was 2.1 times higher than that of 'Hwayoung'. The GABA content in brown rice was 14.06 mg/100 g in 'P47JB-4-B-5-B' and 6.8 mg/100 g in 'Hwayoung'. Especially, the GABA content in brown rice of 'P47JB-4-B-5-B' remarkably increased (about 33 times from 1.48 mg to 44.81 mg/100 g) 2 days after germination. Continuous frequency distributions and transgressive segregation in embryo length and width were observed in the F2 population of the cross between 'P47' and 'Cheongcheong', indicating that the giant embryo was controlled by quantitative trait loci. However, embryo length and width demonstrated high broad sense heritability, implying that giant embryonic traits could be selected in earlier generations in comparison with other quantitative traits.
Recently, giant embryonic rice and functional rice food are preferred by more consumers, which are attributed to the fact that the embryo has high concentrations of essential amino acids, fatty acids, and vitamins relative to other parts of rice grains. In this report, the heredity and stability of giant embryo mutations in successive generations were analyzed regarding a giant embryonic line, 'P47', induced by T-DNA insertion and a F2 population from a cross between 'P47' and 'Junam'. The mutant lines with increases of 1.5, 1.7 and 1.8 times on embryo length, width and 100-embryo weight to those of the control showed stable inheritance across three generations. The continuous frequency distributions of embryo size in the F2 population showed that the embryo size is a quantitative trait of polygene controlled. In addition, wide range of transgressive segregations of six traits affecting embryo size confirmed exchange of genetic materials and recombination between genes controlling embryo size. Five giant embryo mutant lines selected from the F2 population will be used for artificial selection and improvement of giant embryonic varieties.