검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 2

        1.
        2011.05 구독 인증기관·개인회원 무료
        Cinnamaldehyde as the main component of Cinnamomum plants is well known as mammalian transient receptor potential ankyrin 1 (TRPA1) agonist, also activated by low temperature stimuli and mechanosensation. The other TRP subfamily, transient receptor potential vanilloid-1 (TRPV1) sensitive to pungent compounds such as capsaicin and allicin mediates the feeling of warmth. Both TRPA1 and TRPV1 channels are abundantly distributed in sensory neurons. Thus, there is possibility that these channels modulate repellent behaviors of mosquitoes and Drosophila through olfactory receptor neurons (ORNs). In order to confirm this hypothesis, we carried out laboratory repellent tests with cinnamaldehyde to Aedes aegypti females using arm-in-cage test and to a wild type and two TRP channel mutants Drosophila lines using a choice assay. Cinnamaldehyde showed strong repellency against Ae. aegypti and Drosophila wild adults at tested concentrations. However, a mutant fly line did not discriminate or detect the existence of the repellent. These behavioral data suggest that cinnamaldehyde may directly target the TRP channel. More studies to elucidate neural correlates of repellency to ainnamaldehyde compound are as follows: 1) Identifying the ORNs mediating cinnamaldehyde detection using single-sensillum recording techniques, 2) Co-localization of TRP genes on olfactory organs of Ae. aegypti and Drosophila using in situ hybridization and 3) Whether the Aedes TRP homologs might function in cinnamaldehyde repellency using rescued TRP chennels of Drosophila.
        2.
        2006.12 구독 인증기관 무료, 개인회원 유료
        Temperature signaling can be initiated by members of transient receptor potential (thermo-TRP) channels. Hot and cold substances applied to teeth usually elicit pain sensation. Since odontoblasts constitute a well-defined layer between the pulp and the mineralized dentin, being first to encounter thermal stimulation from oral cavity, they may be involved in sensory transduction process, in addition to their primary function as formation of dentin. We investigated whether thermo-TRP channels are expressed in a odontoblast cell line, MDPC-23. The expressions of thermo-TRP channels were examined using reverse transcription polymerase chain reaction (RT-PCR), immunohistochemistry, fluorometric calcium imaging. Analysis of RT-PCR revealed mRNA expression of TRPV1, TRPV2, TRPV4 and TRPM8, but no TRPV3, TRPA1. Immunohistochemical approach failed to detect TRPV1 expression. Whereas the application of 4-phorbol-12,13-didecanoate(10 μM, a TRPV4 agonist), menthol(1 mM, a TRPM8 agonist) and icilin(10 μM, a TRPM8 agonist) produced the enhancement of intracellular calcium concentration, capsaicin(1 μM, a TRPV1 agonist) did not. Our results suggest that subfamily of thermo-TRP channels expressed in odontoblasts may serve as thermal or mechanical transducer in teeth.
        4,000원