Ohmic heating is one of advanced thermal processing techniques which utilize conversion of electrical energy into heat. In our study, a feasibility of ohmic heating was tested to cook instant rice cake to improve energy efficacy as an alternative heating methods of conventional electrical kettle. Ohmic heating was conducted using customized ohmic cell (7.5×4.5×9.5 cm) equipped with titanium electrodes. Instant rice cakes in soup were ohmically heated up to 100°C at different electric fields (9, 12, 15 & 18 V/cm) and temperature holding times (60, 80, 100 & 120 s). Thermocouple was placed into both soup and rice cake to evaluate the temperature profile and energy efficacy. Temperature, voltage and current across the sample were measured and recorded at every 3 s using data acquisition system (DAQ). Mathematical model was developed to calculate the internal energy generation rate (QR, W). Internal energy generation rate (QR, W) was integrated versus temperature come-up time (s) to compute the total internal energy dose (ET, J) using MATLBA software. For energy efficacy (Eff), it was calculated ratio of total internal energy dose (ET, J) to heat quantity (Qh, J). During ohmic heating, temperature come-up time was significantly reduced as a function of elevated electric field (P<0.05). For example, 9V/cm of electric field showed 6.2±0.4 min of temperature come-up time up to 100°C. Higher electric field at 18 V/cm reduced temperature come-up time to 1.9±0.1 min. The electric field of 15 V/cm showed the best energy efficacy as 0.78 which meant 78% of electrical energy was converted into thermal energy for heating. In the texture profile analysis, the most preferable harness was found as 6.191 N at 15 V/cm and 100 s holding time. Our study showed the potential of ohmic heating to cook instant rice cakes for home meal replacement (HMR) and outdoor foods.
Cheese is regarded as a viscoelastic food material. Textural properties of cheese play an important role in overall quality and consumer preference. Textural properties of cheese can be analyzed by rheological analysis and sensory evaluation analysis. Instrumental mechanical methods can provide the measurement of rheological properties of cheeses affecting physical properties, such as cracks, firmness, fracture, and production of eyes in cheeses. Descriptive sensory analysis with well-defined sensory descriptive words is a powerful tool to identify and quantify the key sensory properties of cheeses. In this article, major analytical methods to determine the rheological and sensory properties of cheeses and their applications to cheeses are presented.
시중 즉석 면류의 관능적 성질과 back extrusion test 데이터에 대하여 partial least square regression(PLSR)을 실시하였다. 즉석유탕면 8종과 즉석비유탕면 2종에 대한 관능적 속성으로서 경도(A), 탄성(B), 껄끄러운 정도(C), 이에 박히는 정도(D), 굵기감(E)를 검사하였고, 실험 데이터로 힘-변형 곡선 전체를 사용하였다. PLSR의 회귀계수는 힘-변형 곡선의 압착단계, 항복단계, 압출단계로 크게 구분되어 각 관능속성에 대한 특유의 양 또는 음의 효과를 나타냈다. PLSR의 상관계수는 E>D>A>B>C, 오차(root mean square error of prediction expressed in sensory units)는 D>C>E>B>A, 예측능(relative ability of prediction)는 D>C>E>B>A 로 나타나 종합적으로 ‘이에 박히는 정도’가 PLSR의 적용에 가장 우수하게 나타났다. ‘경도’는 예측능은 낮았지만 상관성은 높아서 시료간 순위의 결정에 합당하게 평가되었다.