검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 4

        1.
        2005.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        공간 해상도 1m 이하의 고해상도 원격 탐사 영상의 민간 활용이 활발해 짐에 따라, 이를 위한 전문 분야 별 영상 분석 방법의 개발 요구가 증가하고 있다. 다양한 영상분석 기법 중에, 주변 화소들간의 공간 분포 관계에 의해 특성이 결정되는 텍스처 영상의 분석은 이러한 목적을 위한 유용한 영상 분석 방법 중 하나이다. 이 연구에서는 원시 영상으로부터 GLCM 알고리즘에 의해 생성된 텍스처 영상에 대해서 방향 인자, 마스킹 커널의 크기, 변수의 종류에 따른 결과를 비교, 분석한 뒤 각각의 결과 영상의 지형공간 특성 분석의 적용성에 대하여 알아보았다. 또한 원시 영상과 텍스처 영상에서 특성 정보를 포함하는 템플레이트를 설정하고 이를 기준으로 반복적인 패턴을 자동으로 검색하는 템플레이트 정합 프로그램을 구현하여 이를 원시 영상과 텍스처 영상에 적용하였고, 처리 결과에 기초하여 향후 적용 가능성을 검토하였다. 이 연구의 결과는 일정한 패턴으로 나타나는 지구과학적인 지형 특성이나 고해상도 위성영상 정보를 이용한 인공 지형지물의 파악 및 분석에 효과적으로 적용될 수 있을 것으로 예상된다.
        4,000원
        2.
        2016.02 KCI 등재 서비스 종료(열람 제한)
        본 실험에서 제안된 질감특징분석 알고리즘은 지방간 환자의 CT영상을 이용하여 정상영상과 질환영상 으로 구분하여, 정상 간 CT영상과 지방간 CT영상을 생성하고 제안된 질감특징분석을 이용한 컴퓨터보조 진단 시스템에 적용하여 6개의 파라메타로 정량적 분석을 통해 지방간 CT영상의 질환 인식률을 도출하고 평가하였다. 결과로 지방간 CT영상 30증례 중에서 각각의 파라메타별 질감특징 값에 대한 인식률은 평균 밝기의 경우 100%, 엔트로피의 경우 96.67%, 왜곡도의 경우 93.33%로 높게 나타났고, 평탄도의 경우 83.3 3%, 균일도의 경우 86.67%, 평균대조도의 경우 80%로 다소 낮은 질환 인식률을 보였다. 따라서 본 연구의 결과를 바탕으로 의료영상의 컴퓨터보조진단 시스템으로 발전된 프로그램을 구현한다면 지방간 CT영상의 질환부위 자동검출 및 정량적 진단이 가능해 컴퓨터보조진단 자료로서 활용이 가능할 것으로 판단되며 최 종판독에서 객관성, 정확성, 판독시간 단축에 유용하게 사용 될 것으로 사료된다.
        3.
        2015.10 KCI 등재 서비스 종료(열람 제한)
        본 연구에서 제안된 질감특징분석 알고리즘은 뇌출혈환자의 CT영상을 이용하여 정상영상과 질환영상으로 구분하여, 고유영상 및 실험영상을 생성하고 제안된 컴퓨터보조진단 시스템에 적용하여 6개의 파라메타로 정량적 분석을 통해 뇌출혈 CT영상의 인식률을 도출하고 평가하였다. 결과로 뇌출혈 CT영상 40증례 중에서 각각의 질감 특징값에 대한 인식률은 평균밝기의 경우 100%, 평균대조도의 경우 100%, 평탄도의 경우 100%, 왜곡도의 경우 100%로 높게 나타났고, 균일도의 경우 95%, 엔트로피의 경우 87.5%로 다소 낮은 질환 인식률을 보였다. 따라서 본 연구의 결과를 바탕으로 의료영상의 컴퓨터보조진단 시스템으로 발전된 프로그램을 구현한다면 뇌출혈 CT영상의 질환부위 자동검출 및 정량적 진단이 가능해 컴퓨터보조진단 자료로서 활용이 가능할 것으로 판단되며 최종판독에서 정확성과 판독시간 단축에 유용하게 사용 될 것으로 사료된다.
        4.
        2013.02 KCI 등재 서비스 종료(열람 제한)
        본 연구는 전산화단층촬영에서 간 질환의 자동 인식으로 질감특징분석(texture feature analysis. TFA) 알고리즘을 제안하고자 하였으며, 간세포암(Hepatocellular carcinoma. HCC)에 대한 컴퓨터보조진단(computer-aided diagnosis.CAD) 시스템을 설계하고, 제안하는 각 알고리즘의 성능을 평가하고자 하였다. HCC 영상에서 분석영역(40×40 픽셀)을 설정하고 각 부분영상에 통계적 특징을 이용한 6가지 TFA 파라메터(평균 밝기, 평균 대조도, 평탄도, 왜곡도, 균일도, 엔트로피)비교하여 간세포암 인식률(recognition rate)을 구하였다. 결과적으로 TFA는 간세포암 인식률을 나타내는 척도로 유의함을 알 수 있었으며 6가지 파라메터에서 균일도가 가장 인식률이 높았으며 평균 대조도, 평탄도, 왜곡도가 비교적 높았고 평균 밝기와 엔트로피는 상대적으로 낮은 인식률을 나타내었다. 이와 관련하여 높은 인식률을 보인 알고리즘(최대 97.14%, 최소 82.86%)을 간세포암 영상의 병변을 판별하여 임상의 조기 진단을 보조하여 치료를시행한다면 진단의 효율성이 높아 질 것으로 판단되었으며, 향후 효율적이고 정량적인 분석을 추가함으로써 질병인식의 일반화에 대한 기준 연구가 필요 할 것으로 사료되었다.