Radionuclide analysis methods must be secured in the event of emergencies such as the discovery of unknown nuclear material or nuclear accidents in neighboring countries or Korea. Most institutions in Korea are in their early stages of radionuclide analysis method development and do not even have Radiation Controlled Areas where they can handle the samples safely. Some institutions such as the Korea Atomic Energy Research Institute have the ability to perform radionuclide analysis for nuclear facilities or verification of nuclear activities. In Korea, it is necessary to secure nuclide analysis technology to enable independent verification in times of emergency or need. This paper analyzes uranium as the target nuclide using alpha spectrometer and TIMS. Alpha spectrometer detects alpha particles emitted from uranium samples and measures the concentration of uranium isotopes. This method has a high selectivity that distinguishes it from other elements, and accurate measurements can be made even when uranium samples are mixed with other elements. In addition, there is minimal interference from other radioactive isotopes in the sample, and the sample preparation is simple, resulting in relatively short analysis times. In contrast, TIMS detects ionized uranium ions by heating the uranium sample. This method may have potential interference from other elements and may take relatively longer analysis times. However, TIMS has high sensitivity and accuracy and can detect various elements other than uranium, making it suitable for various analyses. Therefore, when analyzing uranium, it is recommended to select and use the appropriate device according to the purpose, as both alpha spectrometer and TIMS have their pros and cons. Furthermore, by using both devices in parallel, more accurate and reliable results can be obtained. This paper aims to compare the analysis methods of alpha spectrometer and thermal ionization mass spectrometry, which are widely used for nuclide analysis in unknown nuclear materials.
지역별로 자생하고 있는 백리향 지상부의 휘발성 향기 성분 및 방부성 물질인 phenols의 성분을 조사하기 위해 제주도 고산종, 제주도 중간산종, 경기도, 울릉도, 강원도 서식종을 TD-GC-MSD로 분석한 결과 제주도 중간산종에서 상대적으로 높은 62종의 물질이 조사되었으며 함량도 7365.22μg/m3으로 높은 농도를 나타냈다. 또한 백리향의 휘발성 향기성분 중 제주도 중간산종이 다른 조사지역보다 상대적으로 thymol과 carvacrol의 phenol성 물질이 다른 휘발성분에 비해 35.92%로 높은 결과를 보였다.
A mathematical model is formulated to study the effect of wall mass on the thermal performance of four different houses of different construction. This analytical study was motivated by the experimental work of Burch et al. An analytical solution of one -dimensional, linear, partial differential equation for wall temperature profiles and room air temperatures is obtained using the Laplace transform method. Typical Meteorological Year data are processed to yield hourly average monthly values. These discrete data are then converted to a continuous, time dependent form using a Fast Fourier Transform method. This study is conducted using weather data from four different locations in the United States: Albuquerque, New mexico; Miami, Florida; Santa Maria, California; and Washington D.C. for both winter and summer conditions. A computer code is developed to calculate the wall temperature profile, room air temperature, and energy consumption loads. Three sets of results are calculated one for no auxiliary energy and two for different control mechanism -- an on-off controller and a proportional controller. Comparisons are made for the cases of two controllers. Heavy weight houses with insulation in mild weather areas (such as August in Santa Maria, California) show a high comfort level. Houses using proportional control experience a higher comfort level in comparison to houses using on-off control. The result shows that there is an effect of mass on the thermal performance of a heavily constructed house in mild weather conditions.
The “Film boiling” Chemical Vapor Infiltration (CVI) process is a rapid densification one developed in particular for theelaboration of carbon/carbon composite materials. In order to optimize this new thermal gradient process, we have carried outseveral studies, on one hand, about the nature of the complex chemical reactions in a confined medium, and on the other hand,relative to the role of heat and mass transfers inside the preform. We show in this study that the introduction of a permeablesheath around the preform leads to hybrid liquid/gas CVI process which presents the advantages of very high densificationrates associated with a moderate input energy.
Marine mass concrete mixture for floating structures is derived that can minimize heat of hydration and several construction methods are investigated to reduce thermal cracks. Analysis variables are type and amount of mineral admixtures, number of lifts and placing interval. Probability of thermal crack occurrence is evaluated.
Vertical pipe cooling method was developed for the thermal cracking control of vertically long and slender mass concrete member. This method was applied to mass concrete wall, and the performance of this method was investigated.
부상식 면진기초 매스콘크리트의 시공이 6차에 걸쳐 분리타설로 이루어졌다. 선행 Mock-up실험을 통하여 각각 온도이력계측과 수화열해석이 병행되었고 최선의 양생조건과 시공순서가 부여되었다. 그 결과 수화발열과 냉각시 발생가능한 온도균열은 나타나지 않았다. 그러나 현행 콘크리트 시방서 매스콘크리트편의 온도균열지수의 간이식, 정밀식 모두 낮은 범위의 지수를 나타내었다. 이는 수화열 거동 및 균열예측에 있어 온도균열 발생확률이 높은 것으로 나타나, 실제 타설경과 내용과 상이함을 알 수 있었다. 각 시공단계의 계측 및 해석결과는 대상 부재의 크기와 형상을 고려하여 부재내부를 등온도분포영역과 상대적으로 온도경사가 높은 영역으로 분리할 필요가 있음을 추정케 하였다. 결론적으로, 구조형태별 수화발열/냉각시 온도변화에 보다 민감한 특성두께를 정의하여, 현실적인 온도균열지수를 계산하는 과정과 방법이 필요하다고 사료된다.
온도균열지수에 영향을 미치는 인자들은 무수히 많다. 그러나 본 연구에서는 온도균열지수에 영향을 크게 미치는 시멘트종류, 타설높이, 양생조건, 타설온도, 단위시멘트량, 재료물성치 등의 변수를 변화시키며 해석하였다. 매스콘크리트의 수화열 해석결과는 각 절점마다 나타나므로 모든 절점의 온도응력과 인장강도를 검토한 후 가장 불리한 위치에서의 온도균열지수를 찾아야 한다. 그러나 일반적으로 매스콘크리트 해석시 가장 불리하게 여겨지는 부분은 구조물의 중심부분과 구조물의 표면부분이다. 시멘트종류(대류계수)타설온도 MPC(8)MPC(14)OPC(6)OPC(8)10℃정밀식1.581.501.251.15간략식0.790.750.670.60(℃)18.919.922.524.920℃정밀식1.361.291.141.02간략식0.710.620.640.56(℃)2124.223.426.830℃정밀식1.141.061.080.95간략식0.600.550.650.58(℃)24.927.123.126따라서 본 논문에서는 Fig. 2와 같이 온도균열지수의 변동폭이 심하고 위험할 것으로 예상되는 5곳을 미리 정하고, 몇 번의 수치분석결과를 통해 각 위치별 대표절점을 상부외측표면부(A2), 기초중심부(B), 하부외측표면부(C2) 3곳으로 정하였다. 그리고 그 절점에서의 온도응력을 파악한 후 온도균열지수를 분석하였다. 상부중앙표면부(A1)는 A2 위치에서의 온도응력과 유사하지만 조금 작은 값을 가져 제외하였고, 하부중앙표면부(C1)는 다른 위치에 비해 온도균열지수가 높고, 변동폭이 작아 온도균열에 가장 유리 할 것으로 판단되어 제외하였다. 시멘트의 종류에 따라 보통포틀랜드시멘트(Ordinary Portland Cement)는 OPC로 표시하였고, 중용열포틀랜드시멘트(Moderate heat Portland Cement)는 MPC로 표시하였다. 또한, 단위시멘트량은 320,330,340kg/m3으로 나누어 각각 해석하였다. 콘크리트의 비열 및 열전도율은 일반적으로 Table2와 같이 일정한 범위를 가지므로 본 연구에서는 그 범위 중에서 MIN(열전도율2.6, 비열 1.05), MID(열전도율2.7, 비열1.15), MAX(열전도율2.8, 비열1.26)로 나누어 해석하였다.