검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 8

        2.
        2023.11 구독 인증기관·개인회원 무료
        In the evaluation of the stability of radioactive waste disposal, it is imperative to take into account the concept of the redox front. Initially, this front is typically observed near the surface. However, if the hydraulic gradient increases due to the construction of a disposal facility, the redox front can potentially transport deeper into the geological environment through groundwater flow. This transport triggers changes in the geochemical characteristics, potentially diminishing the natural buffering capacity of the bedrock. Consequently, it is necessary to characterize both the unsaturated and saturated zones in the disposal site. In this context, a tracer test is a useful method to identify the characteristics of the site from the surface to the deep geological environment where the disposal facility can be located. Therefore, this study also aims to establish a methodology enabling a comprehensive understanding of the hydrogeochemical characteristics through the tracer test that can be applied to future sites for research URL (Underground Research Laboratory) or radioactive waste disposal in Korea. For the tracer test, a UNIT (UNsaturated zone Insitu Test facility) was built within the KAERI and five wells with a depth of 24 m were installed in 2022. Before conducting the test, to determine the geochemical background characteristics of the site, topsoil and soils at depths of 30 cm, 60 cm, and 90 cm were collected. Additionally, a groundwater sample was obtained from the newly installed well. Soil samples were analyzed for soil texture, moisture content, total and exchange cations, anions, and heavy metals. Similarly, the groundwater sample was analyzed for cations, anions, and trace elements. The outcomes of these comprehensive analyses will serve as the baseline values in the hydrogeochemical changes after the tracer test. This includes changes in soil composition, water quality, precipitation/dissolution processes, and mineral phases. Furthermore, these results will be provided as input parameters for surface-underground interface models in future studies.
        3.
        2022.05 구독 인증기관·개인회원 무료
        The mechanical, hydraulic, thermal, and chemical properties of the subsurface can have a significant effect on the long-term performance of an underground facility. Therefore, it is important to accurately estimate the aquifer properties in order to predict the groundwater flow and solute transport and thus ensure the stability and safety of a high-level radioactive waste disposal. Using heat as a tracer has become a popular tool for the subsurface characterization. Recent studies have demonstrated that heat tracing is an effective approach to quantify both hydrogeological and thermal subsurface properties. However, most studies in natural conditions assume the local thermal equilibrium (LTE) between the solid and fluid phases, ignoring heat exchange between them. The LTE assumption has not yet been verified by experiments. This work investigates the validity of the LTE assumption by performing the laboratory tracer tests using both solute and heat in a porous medium under natural groundwater flow velocities (Reynolds number, Re < 0.37). The experimental results showed that the LTE assumption can be violated even under natural groundwater flow conditions. The violation of LTE (LTNE) had a significant impact on mechanical dispersion, whereas its effect on velocity was negligible. These results provide the first experimental evidence for LTNE effects in natural conditions. Therefore, it is necessary to consider LTNE effects especially when the mechanical dispersion is evaluated using heat tracing.