At the end of 2022 there were 439 nuclear power reactors in operating around the world, including 25 nuclear power reactors of Korea. Domestic nuclear power plants (NPPs) continuously produce low and intermediate-level radioactive waste (LILW) and spent nuclear fuel (SNF). As amount of radioactive waste is increasing and interim storage facilities meet limitation of their capacity, radioactive waste need to be transported. Consequently, the demand for radioactive waste transportation is increasing and the importance of Radiation Risk Assessment Codes (RRACs) for radioactive waste transportation is also on the rise. Considering the domestic situation where all NPPs are located on seaside, the radioactive waste transportation by ship is inevitable and the its risk assessment is very important for safety. Although various researches on radioactive waste transportation risk assessment is being actively conducted, research on domestic radioactive waste maritime transportation is insufficient. In this study, MARINRAD and KM-RAD were used to review on the radioactive waste transportation risk assessment. The result of reviewing shows that MARINRAD used SNF as transporting radioactive materials and ‘SAND87-7067 (1987)’ as nuclide database, whereas KMRAD used LILW and ‘IAEA Technical Report Series-422 (2004)’. To complement these limitations, we present an modernized integrated database by updating data and covering the radioactive materials from LILW to SNF. These results are expected to contribute to the development of RRACs for domestic radioactive waste maritime transportation.
Currently, low and intermediate-level radioactive wastes and spent nuclear fuels are continuously generated in Korea. For the disposal of the radioactive wastes, the transport demand is expected to increase. Prior to transportation, it is necessary to evaluate the radiation risk of transportation to confirm that is not high. In Korea, there is no transportation risk assessment code that reflects domestic characteristics. Therefore, foreign assessment codes are used. In this study, before developing the overland transportation risk assessment code that reflects domestic characteristics, we analyzed the radiation risk assessment methodology in transportation accident codes developed in other countries. RADTRAN and RISKIND codes were selected as representative overland transportation risk assessment codes. For the two codes we analyzed accident scenarios, exposure pathways, and atmospheric diffusion. In RADTRAN, the user classifies accident severity for possible accident scenarios, and the user inputs the probability for each accident severity. On the other hand, in the case of RISKIND, the accident scenarios are classified and the probabilities are determined according to the NRC modal study (LLNL, 1987) in consideration of the cask impact velocity, cask impact angle, and fire temperature. In the case of RISKIND, the accident scenarios are applied only to transportation of spent nuclear fuel, and cannot be defined for low and intermediate-level radioactive waste. However, in the case of RADTRAN, since the severity and probability of accidents are defined by user, it can be applied to low and intermediate-level radioactive wastes. As the exposure pathways considered in transportation accident, both RADTRAN and RISKIND consider external exposure (cloudshine and groundshine), and internal exposure (inhalation, resuspension inhalation and ingestion). In the case of RADTRAN, additionally, external exposure due to loss of shielding (LOS) is considered. Atmospheric diffusion calculation is essential to determine the extent to which radioactive materials are diffused. In both RADTRAN and RISKIND, atmospheric diffusion calculations are based on Gaussian diffusion model. Users must input Pasquill stability class, release height, heat release, wind speed, temperature and mixing height, etc. Additionally, RADTRAN can input weather information relatively simply by inputting only the Pasquill stability class fraction and selecting the US average weather option. This study results will be used as a basis for developing radioactive waste overland transportation risk assessment code that reflects domestic characteristics.
유류를 포함한 위험 유해물질(Hazardous and Noxious Substances : HNS, 이하 HNS)의 물동량이 증가하는 추세에 있음에도 불구하고 우리나라에서는 HNS 해상운송 중에 일어난 사고의 분석과 위험에 관한 연구가 미진하다. HNS는 형태와 종류가 다양하고, 사고발생 시 피해가 심각하게 나타나기 때문에 사고에 대한 위험도 분석과 저감방안 모색이 필요하다. 본 연구는 ETA를 통해 국내에서 발생하고 있는 HNS 해상운송사고의 전개과정을 분석하여 사고유형과 특징을 고찰하고, 시나리오별 확률과 인명피해를 산출하여 F-N curve로 표현함으로써 위험도를 평가한다. 또한 Risk Matrix를 이용하여 고위험군 시나리오를 선정하여 국내에 적용 가능한 현실적인 사고 저감방안을 모색한다. 연구의 결과는 충돌사고의 발생확률이 가장 높은 반면 인명위험도는 발생확률이 낮은 질식, 침몰, 폭발의 사고유형이 높은 것으로 나타났다. 이러한 인명피해를 줄이기 위해서는 기본적으로 선내에서 안전수칙 및 작업절차를 준수하는 것으로도 효과를 얻을 수 있다.
본 논문에서는 상선의 운항 사고에 관한 양적 위기평가에 관한 실험적인 접근방법들을 기술했다. 이 연구의 목적은 국제해사기구의 공식 안전성 평가(FSA)를 기반으로 운항 사고에 크게 기여하는 요소들을 분석하고, 양적 위기평가기법에 기반을 둔 운항 사고의 확률적인 위기수준을 평가한 후, 선박 안전을 저해할 수 있는 운항 사고 위기를 예측하는 것이다. 확률지수(PI)와 심각성지수(SI) 구성된 위기지수(RI)에 대한 운항 사고의 확률적인 위기수준은 베이지안 이론을 적용한 베이지안 네트워크를 기반으로 본 연구에서 제안한 운항사고 위기 모델을 이용해서 예측했다. 그리고 355건의 핵심 손상 사고기록으로 구성된 시나리오 그룹을 이용하여 제안한 모델의 적용 가능성을 평가하였다. 평가결과, 예측한 PI의 정답률 rAcc은 82.8%로 나타났고, Sp》1.0과 Sp《1.0에 포함되는 PI 변수들의 민감도 초과비율은 10% 이내로 나타났으며, 예측한 SI의 평균 오차 dSI는 0.0195로 나타났고, 예측한 RI의 정답률은 91.8%로 나타났다. 이러한 결과는 제안한 모델과 방법이 실제 해상운송 현장에 적용 가능함을 나타낸다.