검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 10

        1.
        2023.05 구독 인증기관·개인회원 무료
        As regulations on carbon emissions increase, the interest in renewable energy is also increasing. However, the efficiency of renewable energy generation is highly low and has limitations in replacing existing energy consumption. In terms of this view, nuclear power generation is highlighted because it has the advantage of not emitting carbon. And accordingly, the amount of spent nuclear fuel is going to increase naturally in the future. Therefore, it will be important to obtain the reliability of containers for transporting safely and storing spent nuclear fuel. In this study, a method for verifying the integrity and airtightness of a metal cask for the safe transportation and storage of spent nuclear fuel was studied. Non-destructive testing, thermal stability, leakage stability, and neutron shielding were demonstrated, and as a result, suitable quality for loading spent nuclear fuel could be obtained. Furthermore, it is meaningful in that it has secured manufacturing technology that can be directly applied to industrial field by verifying actual products.
        2.
        2023.05 구독 인증기관·개인회원 무료
        Integrity evaluation scheme for Spent Fuel (SF) dry storage has been developed under transportation failure modes. This method especially considered the degradation characteristics of Spent Fuel (SF) during dry storage such as radial and circumferential hydride content, hydride volume fraction, oxide thickness, etc. Hydride and zircaloy cladding are considered as material composite system, using correlation models related to material properties. Critical Strain Energy Density (CSED) is compared with Strain Energy Density (SED), to evaluate cladding integrity. CSED serves as material characteristics, while SED can be considered as boundary condition. To calculate the CSED of cladding in the lateral failure mode, circumferential hydride concentration is used. SED is calculated considering both the bending moment and axial load. On the other hand, in the longitudinal failure case, fuel rod temperature, internal pressure, hoop stress, radial hydride concentration is used to calculate CSED. And pinch force (contact) was considered to evaluate SED. Model validations were conducted by comparing hot cell SF test and existing validated evaluation results. To separately handle normal transportation conditions from hypothetical accident conditions, SED according to stress-strain analysis results was separated into elastic and plastic regions. As a result of applying this scheme for 14×14 SF, failure probability of normal condition was zero, which is the similar result with DOE and same with EPRI. Regarding accident condition, lateral case showed similar result, but longitudinal case showed different but reasonable result, which was due to the different analysis conditions. The proposed methodology which was indigenously developed through this study is named as K-method.
        3.
        2022.05 구독 인증기관·개인회원 무료
        This presentation summarizes recent research on estimating the mechanical loading environment of spent nuclear fuel (SNF) during normal storage and transportation scenarios sponsored by the US Department of Energy Spent Fuel and Waste Science and Technology (SFWST) program. Normal conditions of truck, ship, and railroad transportation of SNF were studied with testing and numerical modeling to determine that the shock and vibration loads applied to SNF during transportation are not expected to challenge SNF cladding integrity or the fatigue life of cladding. The 30 cm package drop scenario was studied with experiments and modeling to determine that mechanical loads during a 30 cm SNF package drop scenario are only expected to challenge SNF cladding integrity under worstcase conditions at elevated temperatures. The SFWST program is currently preparing seismic shake table testing to record SNF mechanical loads in a dry storage earthquake scenario. This presentation summarizes the findings of the transportation and package drop research and details the progress made on the current seismic test.
        4.
        2022.05 구독 인증기관·개인회원 무료
        Sandia National Laboratories is the lead laboratory for the United States Department of Energy for the research and development (R&D) efforts to support the technical basis for the long-term storage, subsequent transportation, and permanent disposal of commercial spent nuclear fuel and high-level waste. Sandia does not design nuclear facilities; Sandia performs R&D to help ensure facilities and the fuel cycle are safe, sustainable, and secure. This talk will focus on the spent fuel storage and transportation programs that contribute to this work. The goal in spent fuel storage and transportation R&D is to understand the mechanical integrity of the fuel, cladding, and storage system beyond interim storage and into disposal time frames. Our research is focused on understanding the high burn-up cladding integrity over time, understanding the thermal behavior during drying and storage, understanding potential cladding oxidation pathways, and quantifying in the external loads experienced during transportation, handling, and seismic events. Additionally, this work includes extensive work to understand the basic science of canister stress corrosion cracking and the potential consequences of a through wall canister crack.
        7.
        2018.06 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        During the seven years from 2009 to 2016, PWR SNF (spent nuclear fuel) transportation and storage systems suitable for domestic conditions were developed by the government to cope with the saturation of wet storage capacity in NPPs. One of the developed systems is a multipurpose metal cask applicable for transportation/storage; the other is a concrete cask dedicated to storage. Efficient cask technologies were secured utilizing the characteristics and experience of relevant industrial, academic and research institutes. Technological independence was also achieved through several patent registrations of research outcomes. To prepare for a rapid increase of demand in the near future, technology transfer of secured patents and technologies to the domestic industry was carried out twice in the years of 2016 and 2017. This
        4,000원