Geologic disposal at deep depth is an acceptable way to dispose of high-level radioactive waste and isolate it from the biosphere. The geological repository system comprises an engineered barrier system (EBS) and the host rock. The system aims to delay radionuclide migration through groundwater flow, and also, the flow affects the saturation of the bentonite in the EBS. The thermal conductivity of bentonite is a function of saturation, so the temperature in the EBS is directly related to the flow system. High-temperature results in the two-phase flow, and the two-phase flow system also affects the flow system. Therefore, comprehending the influencing parameters on the flow system is critical to ensure the safety of the disposal system. Various studies have been performed to figure out the complex two-phase flow characteristics, and numerical simulation is considered an effective way to predict the coupled behavior. DECOVALEX (DEvelopment of COupled models and their VALidation against EXperiments) is one of the most famous international cooperating projects to develop numerical methods for thermo-hydro-mechanicalchemical interaction, and Task C in the DECOVALEX-2023 has the purpose of simulating the Fullscale Emplacement (FE) experiment at the Mont-Terri underground research laboratory. We used OGS-FLAC, a self-developed numerical simulator combining OpenGeoSys and FLAC3D, for the simulation and targeted to analyze the effecting parameters on the two-phase flow system. We focused on the parameters of bentonite, a key component of the disposal system, and analyzed the effect of compressibility and air entry pressure on the flow system. Compressibility is a parameter included in the storage term, defining the fluid storage capacity of the medium. While air entry pressure is a crucial value of the water retention curve, defining the relation between saturation and capillary pressure. From a series of sensitivity analyses, low compressibility resulted in faster flow due to low storage term, while low air entry pressure slowed flow inflow into the bentonite. Low air entry pressure means the air easily enters the medium; hence the flow rate becomes lower based on the relativity permeability definition. Based on the sensitivity analysis, we further investigate the effect of shotcrete around the tunnel and excavation damaged zone. Also, long-term analysis considering heat decay of the radioactive waste will be considered in future studies.
박테리오신은 다양한 식품에서 천연 보존제로 그리고 항생제 대체제로 잠재력을 가지고 있다. 그러나 박테리오신의 다단계 정제 공정은 높은 생산 비용을 야기하여 상업적 이용 등 소비자 접근성에 장애요인이 되고있다. 식품 등 일부 산업 분야에서 활용하기 위한 박테리오신의 순도는 그리 높지 않아도 되며, 이에 따라 정제 공정을 간소화하여 생산 비용을 낮추고 공정 효율성을 강화할 수 있다. 이러한 관점에서 박테리오신 등에 적용할 수 있는 수성- 이상계 시스템(ATPS)은 높은 정제 수율과 빠른 처리 시간으로 인해 산업분야에서 하부 공정 처리 기술로 적절한 대안이 될 수 있으며, 고분자 수용액이 70~90% 물로 이루어진 친환경적 기술로서 환경보호에도 도움을 줄 것으로 전망된다.
As the fabrication technology used in FPDs(flat-panel displays) advances, the size of these panels is increasing and the pattern size is decreasing to the um range. Accordingly, a cleaning process during the FPD fabrication process is becoming more important to prevent yield reductions. The purpose of this study is to develop a FPD cleaning system and a cleaning process using a two-phase flow. The FPD cleaning system consists of two parts, one being a cleaning part which includes a two-phase flow nozzle, and the other being a drying part which includes an air-knife and a halogen lamp. To evaluate the particle removal efficiency by means of two-phase flow cleaning, silica particles 1.5μm in size were contaminated onto a six-inch silicon wafer and a four-inch glass wafer. We conducted cleaning processes under various conditions, i.e., DI water and nitrogen gas at different pressures, using a two-phase-flow nozzle with a gap distance between the nozzle and the substrate. The drying efficiency was also tested using the air-knife with a change in the gap distance between the air-knife and the substrate to remove the DI water which remained on the substrate after the two-phase-flow cleaning process. We obtained high efficiency in terms of particle removal as well as good drying efficiency through the optimized conditions of the two-phase-flow cleaning and air-knife processes.
‘In structural system, a certain amount of uncertainties always persists in material properties, geometric parameters and applied loads. In this study, the structure is designed to withstand the uncertainties which are caused by either measurement inaccuracy or system complexity. Random structures are modelled by using ANSYS probabilistic design module. It can be applied easily to any structural system with random parameters. The aim of this paper is to make optimal design for the beam with random input variables due to width and height and response parameters due to displacements and stresses. The probabilistic design is also carried out with ANSYS APDL and then the optimal design is sequentially solved. As the total volume of beam, stresses and displacements at the beam are treated as random parameters, the numerical results are obtained.'
This study is focused on the channel design of bipolar plate in the electrode of hydrogen gas generator. The characteristics of hydrogen gas generation was studied in view of efficiency of hydrogen gas generation rate and a tendency of gas flow through the riv design of electrode. Since the flow rate and flow pattern of generated gas in the two phase flow system are the most crucial in determining the efficiency of hydrogen gas generator, we adopted the commercial analytical program of COMSOL MultiphysicsTM to calculate the theoretical flow rate of hydrogen gas from the outlet of gas generator and flow pattern of two phase fluid in the electrode. In this study, liquid electrolyte flows into the bipolar plate and decomposed into gas phase, two phase flow simulation is applied to measure the efficiency of hydrogen gas generation.