본 연구에서는 친환경적이고 경제적인 수용액 환경에서 금속-유기 골격체(metal-organic frameworks, MOF)인 UiO-66을 합성하는 방법을 개선하고, 합성 조건이 UiO-66의 표면적 및 결정성에 미치는 영향을 분석하였다. 합성 실험은 금 속 용액과 리간드 용액의 주입 순서 및 계면활성제(Tween 20)의 첨가 유무를 변화시키며 진행하였다. 그 결과, 리간드 용액 을 금속 용액에 주입하고 계면활성제를 사용하지 않은 경우, 표면적과 결정성이 더 높은 UiO-66을 얻을 수 있었다. SEM 및 XRD 분석 결과, 계면활성제의 첨가는 입자 크기와 결정 구조에 큰 변화를 주지 않았으나, BET 분석 결과 표면적 감소가 확 인되었다. 이는 합성 과정에서 계면활성제가 핵 형성과 결정 성장에 영향을 미칠 수 있음을 시사한다. 본 연구 결과는 수용액 기반 UiO-66 합성법의 최적화, 대규모 제조 공정 및 다양한 산업적 응용에 유용한 정보를 제공할 수 있을 것이다.
In this study, UiO-66-NH2 was synthesized and incorporated with graphene aerosol (UiO-66-NH2/GA) and ethylenediamine functionalized graphene oxide (UiO-66-NH2/GO-NH2). These composites were characterized using infrared spectroscopy, powder X-ray diffraction, ultraviolet–visible light spectroscopy, scanning electron microscope, and energy-dispersive X-ray spectroscopy. UiO-66-NH2/GO-NH2 exhibited 93% adsorption of quinoline in 5 h, UiO-66-NH2 and UiO-66-NH2/GA presented 80.4% and 86.5%, respectively. The high adsorption observed on UiO-66-NH2/GO-NH2 was attributed to the unique electronic properties, and hydrogen bonding between the nitrogen atom of quinoline and NH2- phenyl fragment of UiO-66-NH2, and N–H of ethylenediamine. GO also offered combined strong π–π interactions on its surface, and the oxygen coverage (~ 50%) on GO within the structure is responsible for the formation of strong hydrogen bonds with quinoline. Theoretical calculation suggested that UiO-66-NH2/GO-NH2 presented a more favourable adsorption energy (− 18.584 kcal/ mol) compared to UiO-66-NH2 (− 16.549 kcal/mol) and UiO-66-NH2/GA (− 13.991 kcal/mol). These results indicate that nanocomposites have a potential application in quinoline capture technologies in the process of adsorptive denitrogenation.
A porous-carbon material UiO-66-C was prepared from metal–organic frameworks UiO-66 by carbonization in inert gas atmosphere. Physicochemical properties of UiO-66-C materials were well characterized by Powder X-ray diffraction (PXRD), Scanning electron microscope (SEM), Fourier-transform infrared spectroscopy (FT-IR), Raman spectrometer, N2 adsorption/ desorption isotherms (BET), and the adsorption properties of the products were studied UiO-66-C has a high specific surface area up to 1974.17 m2/ g. Besides, the adsorption capacity of tetracycline could reach 678.19 mg/g, the adsorption processes agreed well with the pseudo-second-order kinetic model and Langmuir isotherm model.
본 논문에서는 UiO-66 입자를 합성하고, 이를 열가소성 탄성중합체인 polystyrene-block-polybutadiene-block-polystyrene (SBS) 블록공중합체 매질에 삽입하는 방식으로 CO2/N2 기체를 분리하기 위한 혼합 매질 분리막을 제조하였다. UiO-66 가 고분자 매질에서 미치는 영향을 확인하기 위해 SBS와 UiO-66의 질량 비율을 변화시켜가며 혼합 매질 분리막을 제조하였 다. 또한 UiO-66 입자의 균일한 분산을 위해서 두 차례에 걸친 초음파 처리 및 자성 막대를 이용한 물리적 혼합을 활용하였 다. 제조된 시료들은 푸리에 변환 적외분광법(FT-IR), 주사전자현미경(SEM)을 통해 확인하였다. 또한 기체 투과 성능은 time-lag method를 통해 확인하였다. 이때, UiO-66의 함유량이 증가함에 따라 혼합 매질 분리막의 투과도는 크게 증가하였지만, CO2/N2 선택도는 크게 감소하지 않았다. 가장 좋은 성능을 보인 20%의 UiO-66 입자를 함유한 분리막의 경우 663.8 barrer의 CO2 투 과도와 13.3의 CO2/N2 선택도를 보여주었다. 이러한 결과는 Robeson plot에서 순수 고분자 막에 비해 upper bound에 더 가까 운 성능을 나타냈는데, 첨가된 UiO-66가 선택도를 크게 희생시키지 않고 기체 투과도는 두 배 이상 향상시켰기 때문이다.