본 연구는 PEBAX/PVDF 복합막을 제조하고 에탄올/물 혼합액에 대한 투과증발 성능을 평가하였다. 또한 PVDF 지지체 표면에 ZIF-8 층을 형성하여 복합막의 투과증발 성능을 향상시키고자 하였고, PEBAX 선택층 두께에 따른 성능 비교 를 통해 최적의 막을 선정하였다. 제작된 복합막을 물과 에탄올이 95/5 중량비로 혼합된 공급액에 대하여 투과증발 실험을 수행하였다. 그 결과 ZIF-8 충이 형성된 PVDF 지지체를 사용한 복합막의 경우 플럭스 1.98 kg/m2h, 분리 계수 3.88로 일반 PVDF 지지체를 사용한 복합막보다 투과량과 선택도가 모두 높은 값을 나타내었다.
본 연구에서는 에너지 소모가 큰 기존 진공 증류 공정의 대안으로 친환경이면서 에너지 효율적인 투과증발 분리 공정을 이용하여 1,2 hexane diol/water (1,2 HDO/water) 혼합물에서 물을 분리하는 데 적용되었다. 사용한 분리막은 glutaraldehyde (GA)로 가교된 PVA를 알루미나 중공사 막(Al-HF) 내부에 코팅하여 사용하였다. 1,2 HDO/water 투과증발 분리공 정에서는 PVA/GA 비율, 경화 온도 및 투과증발 분리공정 운전 조건에 대한 막의 최적화를 연구하였다. 장기 안정성 시험에 서 PVA/GA (몰 비율 = 0.08, 경화 온도 = 80°C) 로 코팅된 Al-HF 막이 공정온도 40°C에서 1.90~2.16 kg/m2h 범위의 투과 도를 보였으며, 투과용액의 수분 함량은 99.5% (separation factor = 68) 이상이었다.
방오도료는 수중에서 사용 되는 시설물의 원치 않은 해양 생물 부착으로 인해 생기는 다양한 문제점을 해결 하기위해 사용되어 왔다. 하지만 최근, 방오도료에 사용되는 방오제가 해양생태계에 악영향을 미치는 것이 밝혀지면서 사용을 줄이거나 대체되고 있는 상황이다. 주로 사용되는 대체제로써 방오제를 사용하지 않거나 방출하지 않는 파울 릴리즈 방오 도료가 주목 받고 있다. 이 연구에서는, 파울 릴리즈 도료로 하이드 록실 말단 폴리 디메틸 실록산과 산화철 안료를 포함하는 접착 필름을 제작하였다. 방오 시험을 위해 박테리아로는 Escherichia coli와 미세조류 종으로 Navicula annexa 와 Nitzschia 종을 사용하여 수행하였다. 이 연구 결과로, 표면이 조금 더 거칠 때 물리적인 미생물 부착 방지를 통해 더 나은 방오 성능을 나타냄을 알 수 있었다.
In the epoxy resin manufacturing process, carcinogenic ECH (epichlorohydrin), IPA (isopropanol) and Biphenol-A materials has been generally used. After the reaction, byproducts containing ECH/IPA/Water is remained along with final product. But, in the recovery process, ECH and IPA forming an azeotropic mixture with water containing feed solution at any temperature condition, the recovery of high purity ECH is difficult only by distillation. Therefore, pervaporation process could be suitable countermeasure due to its mild operation condition for separation of azeotropic mixtures at the point of energy and cost saving. In this study, Alumina-PVA composite membrane was prepared for pervaporation dehydration of ECH/IPA/Water feed mixtures and pervaporation performance and stability of the prepared composite membrane was identified.
본 연구는 두 종류의 표면 개질제 trimethylchlorosilane(TMCS), hexamethyldisilazane(HMDZ)를 사용하여 fumed silica의 표면 개질 과정에서 첨가량 변화에 따른 소수성 및 분산성 변화에 대한 연구를 진행하였다. 표면 개질 과정에서 사용된 개질제는 fumed silica 중량 대비 0~80wt%로 첨가하였으며, FT-IR(Fourier transform infrared spectroscopy), EA(Elemental analysis) 분석을 통해 개질제의 첨가량이 증가함에 따라 fumed silica의 소수성이 증가함을 확인하였다. 그리고 fumed silica의 소수성이 증가함에 따른 분산성 변화 분석을 위해 TEM(Transmission electron spectroscopy), PSA(Particle size analyzer)를 측정하였다. 그 결과, fumed silica의 소수성이 증가함에 따라 fumed silica의 입자간의 응집력이 약화되어 분산성이 향상되고 평균 입자 크기 또한 감소하는 것을 확인할 수 있었다. Fumed silica의 개질 안정성을 평가하기 위해 자체 실험을 진행한 결과, 소수성 개질된 fumed silica의 경우 표면 개질제 첨가량과 관계없이 일정 시간 이후에도 소수성이 유지되고 있음을 확인하였다.
The hollow fiber composite membrane used in pervaporation test was prepared by dip coating method on the Polyether Sulfone hollow fiber using tartaric acid added PVA solution. And each membrane solution contains H2SO4 as acid catalyst for esterification reaction between PVA and TA. Also, to increase coating uniformity, specific amount of SDS(sodium dodecyl sulfate) was contained. Prepared membrane was characterized by IR spectroscopy, swelling to observe cross-linking degree of PVA and Tartaric acid then, finally used in pervaporation test. The pervaporation test was mainly studied about effect of catalyst amount in the membrane solution and the test was performed until pervaporation value converged.
도시의 건축물은 고층화와 미려함에 초점을 맞춘 추세로 건축되고 있다. 도시의 아름다움을 유지하고, 높은 가치를 지키기 위해서는 항상 좋은 상태로 건축물을 관리해야 하는 것이 중요하다. 이를 위해서는 건축물의 내외장재 를 깨끗하게 유지하여야 하며 많은 비용을 필요로 한다. 따라서 사용자들은 비, 눈, 또는 공기 오염으로부터 원래의 상태를 유지할 수 있는 자기 세정력을 요구하고 있다. 본 연구는 도장된 패널에 자기 세정 기능을 더하여 건축물의 관리 비용을 줄여주는 해법을 제시하고자 한다. polymethylsilicate를 함유한 소수성 PVDF 도막을 물로 처리했을 때 polymethylsilicate의 가수분해에 의해 코팅 소재의 표면에 하이드록시기가 형성되어 세정력을 가지게 되므로 물에 침 지한 후 표면의 색과 접촉각의 변화를 관찰하였다. 물 처리에 의해 소재의 표면에 친수성기를 형성하는 것은 매우 순 한 과정이므로 여러 가지 환경 오염원으로부터 건축물을 보호할 수 있는 자기세정 시스템의 새로운 응용 분야를 열 어줄 것이다.
다중벽 탄소나노튜브(MWCNT)는 전기적, 기계적 성질이 매우 우수한 소재이나, MWCNT를 복합
체로 응용하는 과정에서 MWCNT의 분산이 어려워 복합체의 제조에 제한을 받고 있다. 본 연구에서는
MWCNT의 표면을 산화시켜 -OH기를 표면에 도입하고, 표면에 음전하를 증가시켜 불소 고분자(PTFE) 도막에서 MWCNT의 분산을 증대시켰다. 그리고, MWCNT의 효과적인 분산으로 PTFE 복합체 도막의 경도와 소수성이 증가되고, 전기 정도성을 부여하여 표면의 기능성이 증대됨을 보여주었다.