For use in ultrasonic actuators, we investigated the structural and piezoelectric properties of (1 - x)Pb(Zr0.515Ti0.485)O3 - xPb(Sb1/2Nb1/2)O3 + 0.5 wt% MnO2 [(1 - x)PZT - xPSN + MnO2] ceramics with a variation of x (x = 0.02, 0.04, 0.06, 0.08). All the ceramics, which were sintered at 1250˚C for 2 h, showed a typical perovskite structure, implying that they were well synthesized. A homogeneous micro structure was also developed for the specimens, and their average grain size was slightly decreased to 1.3μm by increasing x to 0.8. Moreover, a second phase with a pyrochlore structure appeared when x was above 0.06, which resulted in the deterioration of their piezoelectric properties. However, the 0.96PZT-0.04PSN+MnO2 ceramics, which corresponds with a morphotropic phase boundary (MPB) composition in the (1 - x)PZT - xPSN + MnO2 system, exhibited good piezoelectric properties: a piezoelectric constant (d33) of 325 pC/N, an electromechanical coupling factor (kp) of 70.8%, and a mechanical quality factor (Qm) of 1779. The specimens with a relatively high curie temperature (Tc) of 305˚C also showed a significantly high dielectric constant (εr) value of 1109. Therefore, the 0.96PZT - 0.04PSN + MnO2 ceramics are suitable for use in ultrasonic vibrators.
Ultrasonic vibrator is an equipment which atomizes and homogenizes the oils by breaking the oil particles with ultrasonic vibration cavity, and possibly improves the properties. There are various parameters on the effect of ultrasonic irradiation. Especially, this study intended to investigate the matrix structure of sludge oils and the erosion damages for horn disc SS41 according to the variation of the oil temperature and the immersing depth of horn disc. Sludge oils were irradiated with ultrasonic vibration and then observed the aspects of the change of oil particles. From these, the recycling feasibility of sludge oil for useable oil to be burnt was determined. The erosion damages for horn disc SS41 were examined with weight loss, weight loss rate and the irradiation time to max. erosion rate. These data will be useful to the development of ultrasonic breaking systems to recycle sludge oil and to consider a countermeasure for the prevention of erosion damages.
Many investments and works being continued to preserve green ocean in each countries of the world. Especial1y, the researches on the prevention of marine oil pollution being strengthened. It is not easy to disclose sludge oils that were produced necessarily in the ships operation, so that they are transferred to shore treating facility after collected inside the ship's sludge tank mostly. However, this shore transferring method is not only costly and time consuming but also entails risk of oil pollution. In this regard, it will be the best way to manage the sludge oils inside ship itself. The purpose of this study is to device an ultrasonic breaking systems which recycle the sludge oil from ships into usable oil to be burnt. In this paper, the first place, matrix structures of sludge fuel oil(SFO) and sludge lubricating oil(SLO) with the irradiation time for ultrasonic vibrator were interpreted. And, erosion damage for vibrator horn tip which is one of important part of ultrasonic breaking systems was examined under such an environment of the sludge oils. The material for horn tip is being made of SS41 steel and its erosion phase was investigated with variation of the vibration amplitude of 50μm and 24μm as well as the change of temperature in the oil environments. It is suggested that the experimental results can be helpful to the development of sludge oil disposing systems for the vessel.