A vitrification facility control area is formed to control and monitor the vitrification facility process, and the control system is designed to manage the vitrification facility more safely and effectively. The control system is largely composed of a process control system and an off-gas monitoring system. The process control system is operated so that operation variables can be maintained in a normal state even in normal and transient conditions, and is designed so that the vitrification facility can be stably maintained in the event of an abnormality in the facility. The process control system consists of Programmable Logic Controller (PLC) and Local Control Panel (LCP), which controls and monitors each unit device. In addition, operation variables are provided to the operator so that the operator can manage operation variables during process control in a centralized manner for the operation of the vitrification facility. The off-gas monitoring system is operated to monitor whether the off-gas discharged to the environment is stably maintained within the standard level, and the off-gas is monitored through an independent monitoring system.
After melting glass at a high temperature of about 1,100 degrees in the Cold Crucible Induction Melter (CCIM) of the vitrification facility, radioactive waste is fed into the CCIM to vitrify radioactive waste. Accordingly, since the metal sector of the CCIM contacts the high-temperature molten glass, cooling water is supplied to continuously cool the metal sector. The cooling system is divided into primary and secondary cooling water systems. The primary cooling water flows inside the metal sector of the CCIM to maintain the metal sector within normal temperature, thereby forming a glass layer between the metal sector and the high-temperature melting glass. The secondary cooling system is a system that cools the primary cooling water that cools the metal sector, and removes heat generated from the primary cooling system. In addition, it is designed to stably supply cooling water to the secondary cooling water system through an emergency cooling water system so that cooling water can be stably supplied to the secondary cooling water system in the event of secondary cooling water loss. Therefore, it is designed to maintain the facility stably in the event of loss of cooling water for the CCIM of the vitrification facility.