검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 9

        4.
        2021.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        PURPOSES : The purpose of this study is to evaluate an asphalt mixture via field application to utilize basalt aggregates produced on Jeju Island for a warm mix asphalt (WMA). METHODS : Using commercially available WMA additives, an indoor experiment is conducted on low- and high-void aggregates among basalt aggregates on Jeju Island. The physical properties of the WMA mixture are evaluated using one solid type and two liquid types of WMA additive. To evaluate the applicability of the WMA additives, air void, saturation, aggregate void, Marshall stability, flow number, indirect tensile strength, and toughness tests are performed. For the field application of WMA using basalt aggregates, three types of pavements (HMA, WMA-Solid, and WMA-liquid) are constructed. When applying the pavements in the field, an anti-stripping agent is incorporated to improve the water resistance while considering the characteristics of the basalt aggregate. Samples are acquired via plant and field coring to evaluate the properties of the materials applied in the field. RESULTS : In the indoor test for analyzing the applicability of the commercialized WMA additives to basalt aggregates, all tests except the indirect tensile strength test show results that satisfy the standards. All test results, including that from the indirect tensile strength test, satisfy the standard values in the test that uses the sample material obtained from the plant. Similarly, in the test with field cores, all test results satisfy the standard values. Therefore, the experimental value in the field application is generally higher than the test value in the indoor experiment. It is inferred that this is due to the difference between the basalt aggregates used in the indoor and field experiments, as well as the addition of the anti-stripping agent. CONCLUSIONS : Basalt aggregates produced on Jeju Island can be used for WMA pavements, as demonstrated via indoor experiments and field applications. However, owing to the characteristics of basalt aggregates, a method for improving water resistance should be considered, and tests to determine the indirect tensile strength should be performed using various basalt aggregates. In addition, because various basalt aggregates exist owing to the diverse geology characteristics of Jeju Island, they should be evaluated via more experiments and field applications.
        4,000원
        5.
        2020.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        PURPOSES : This paper presents a quality evaluation of Korean foamed asphalt, which uses the maximum expansion ratio and half-life method. The maximum expansion ratio and half-life method are used to determine the optimum water content to produce a foamed asphalt mixture. The foamed asphalt mixture according to determine an optimum water content with this method; the mixture quality was compared with hot mix asphalt mixture. METHODS : For the foamed asphalt mixed design, the water content was determined in addition to the Marshall mixing design method. The water content was determined using the ratio of the maximum to minimum volume and the time for the volume to decrease to half of the maximum volume. We conducted stability, indirect tensile strength, tensile strength ratio, dynamic immersion, and absorption rate tests to compare the foamed and hot mixed asphalt mixtures. RESULTS : The foam asphalt mixture exhibited less performance reduction due to temperature change than the hot mixed asphalt mixture. Most of the two mixture types exhibited similar performance. In addition, both mixtures should use an anti-stripping agent to improve water resistance. CONCLUSIONS : As a result of the laboratory test, the foamed asphalt mixture was able to ensure a similar performance to the hot-mixed asphalt mixture.
        4,000원
        6.
        2017.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        PURPOSES:This study aimed to analyze the experimental and numerical behavior of warm mix asphalt pavement prepared using steel slag and RAP and to conduct economic analysis of pavement construction.METHODS :For developing high performance asphalt pavement, we performed three evaluations: fundamental analysis, experimental testing, and 3D finite element analysis. In particular, 3D finite element analysis was conducted on several pavement structures by adopting the results of experimental tests.RESULTS :Through the various evaluations, it was established that steel slag was effective for use as asphalt mixture aggregate. Moreover, asphalt mixture constituting steel slag and RAP demonstrated higher performance behavior compared with conventionally used asphalt mixture. Furthermore, based on the 3D FE modeling, we established that the developed asphalt pavement constituting steel slag and RAP can be utilized for thin layer pavement with comparable performance behavior.CONCLUSIONS:Warm mix asphalt pavement prepared using steel slag and RAP is more competitive and economic compared to hot-mix asphalt pavement. Moreover, it can be applied for preparing thin layer asphalt pavements with reasonable performance. The developed warm mix asphalt pavement prepared using steel slag and RAP can be an alternative pavement type with competitive performance based on the reasonable economic benefit it provides.
        4,200원
        7.
        2011.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        환경보호에 부응하고 고에너지효율성을 갖춘 중온아스팔트혼합물이 가열아스팔트혼합물의 대안으로 부각되고 있다. 본 연구의 목적은 아스파민을 혼합하여 제조한 중온아스팔트혼합물을 실험적으로 평가하고, 역학적-경험적 포장설계법인 MEPDG를 이용하여 설계한 결과를 일반아스팔트혼합물 설계와 비교하는 것이다. 실험재료는 최대공칭치수 12.5mm인 골재와 PG64-28바인더가 사용되었으며, 기존 혼합물, 0.3%와 0.5%의 아스파민을 혼합한 중온아스팔트혼합물에 대한 회복탄성계수실험이 실시되었다. 실험결과를 MEPDG 설계의 입력변수로 하여 분석한 결과, 아스파민을 사용한 중온아스팔트혼합물의 소성변형량이 일반혼합물에 비해 훨씬 적어 소성변형에 대한 저항성이 향상됨을 알 수 있었다.
        4,000원
        9.
        2011.02 서비스 종료(열람 제한)
        현재 범세계적으로 아스팔트 포장분야의 대표적인 녹색기술인 저탄소 중온 아스팔트 포장기술을 재활용 포장기술에 적용하는 연구를 진행 중에 있다. 본 연구는 저탄소 중온 재활용 아스팔트 재생첨가제의 개발에 있어서 첨가제의 성상과 성분에 따른 기능과 조합을 통해 기능을 향상시켜 개발한 고상형 2종과 액상형 3종의 실내시험 결과를 보여주고 있다. 아스팔트 바인더 시험 및 혼합물 시험을 통하여 5종의 저탄소 중온 재활용 아스팔트 재생첨가제의 기본 성능 및 물성을 확인하였고, 재생 아스팔트 포장에도 중온화 기술을 적용시킬 수 있다는 가능성을 볼 수 있었다.