검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 3

        1.
        2025.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In order to optimize the manufacturing of polypropylene-derived few-layer graphene, an innovative utilization of nonsupported iron oxide nanoparticles generated under various fuel environment conditions was studied. Three distinct fuel combustion environment circumstances (fusion, fuel shortage, and fuel excess) produced a variety of Fe2O3 nanoparticles for cost-effective and green graphene deposition. XRD, H2- TPR, Raman, and TGA measurements were used to characterize both new and spent catalysts. Remarkably, the microstructure of the generated Fe2O3 nanoparticles could be controlled by the citric acid/iron nitrate ratio, ranging from spheroids ( Fe2O3(0)) to sheets ( Fe2O3(0.5-0.75)) and a hybrid microstructure that consists of sheets, spheroids, and interconnected strips ( Fe2O3(1-2)). According to fuel situation (citric acid/iron nitrate ratio, Fe2O3( 0-2)), various graphitization level and yields of graphene derivatives including sheets, ribbons, and onions have been developed. With the ideal fuel/oxidant ratio (ɸ = 1), the Fe2O3( 0.75) catalyst demonstrated the best catalytic activity to deposit the largest yield of highly graphitized few graphene layers (280%). Lean and rich fuel conditions (1 > ɸ > 1) have detrimental effects on the amount and quality of graphene deposition. It is interesting to note that in addition to graphene sheets, an excess of citric acid caused the production of metallic cores, hollow, and merged carbon nano-onions, and graphene nano-ribbons. It was suggested that carbon nano-onions be converted into graphene nano-ribbons and semi-onion shell-like graphene layers.
        4,500원
        2.
        2025.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Polypropylene waste significantly contributes to environmental pollution due to its low biodegradability. Numerous experiments have shown that laser irradiation of polymers can lead to the conversion of laser-induced graphene (LIG). In this paper, the LIG formation process in polypropylene (PP), polydimethylsiloxane (PDMS), and polypropylene/polydimethylsiloxane (PP/PDMS) systems in a vacuum environment was simulated using molecular dynamics. The LIG yields and carbon network sizes of the systems in oxygen and vacuum environments at different temperatures were analyzed to determine the optimal temperature for upgrading PP to LIG. It was observed in all three systems that the LIG structure was formed. The structure was composed not only of six-membered carbon rings, but also of five-membered and seven-membered rings, resulting in out-of-plane fluctuations and bending. A vacuum environment and high temperature promote LIG formation with high yield, large size, and minimal defects. The current study provides theoretical guidance for optimizing the laser graphene process for PP assisted with PDMS in a vacuum environment and helps to understand the mechanism underlying the conversion from polyolefins to graphene under CO2 laser at the atomic level.
        4,300원
        3.
        2021.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This work reveals a modified method for the preparation of activated carbon (P-ACA) using low-cost materials (mix natural asphalt: polypropylene waste). The P-ACA was prepared at 600 °C by assisting KOH and HF. The morphological variations and chemical species of the P-ACA were characterized using SEM–EDX and FTIR. The active surface area, density and ash content of the P-ACA were also investigated. Adsorption properties of P-ACA were used for the thermodynamic and kinetic study of 4-((2-hydroxy naphthalenyl) diazenyl) antipyrine (HNDA), which was prepared as a novel azo dye in this work. The optimal conditions (initial concentration, adsorbent dose, contact time and temperature) of the adsorption process were determined. Adsorption isotherms (Freundlich and Langmuir) were applied to the experimental data. These isothermal constants were used to describe the nature of the adsorption system, and the type of interaction between the dye and the P-ACA surface. The results have indicated that the mixture (Natural asphalt-polypropylene waste) is efficient for the synthesis of P-ACA. The synthesized P-ACA demonstrates the presence of pores on the surface with various diameter ranges (from 1.4 to 4.5 μm). Furthermore, P-ACA exhibits an active surface area of 1230 m2 g−1, and shows a high adsorption capacity for HNDA.
        4,500원