검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 5

        1.
        2023.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 연구에서는 뇌혈류 신호를 측정할 수 있는 시변자계 기반의 비접촉식 직물센서를 설계하여 뇌혈류 신호 검출 및 감성평가의 가능성을 탐색하고자 하였다. 직물센서는 40 denier의 은사를 30합사 한 후 컴퓨터 기계 자수하여 코일 형 센서로 구현하였다. 뇌혈류 측정 실험을 위해 코일형 센서를 경동맥 부위에 부착하고, ECG (Electrocardiogram) 전극과 RSP (Respiration) 측정 벨트를 부착 및 착용하도록 하였으며, 동시에 초음파 진단기기를 사용해 도플러 초음 파 검사(Doppler Ultrasonography)를 수행하여 혈류 속도를 측정하였다. 피험자에게 Meta Quest 2를 착용시키고, 실 험을 위해 조작된 영상 시각 자극을 보여주면서 혈류 신호를 측정한 후 시각 자극에 대한 감성평가 설문지를 작성하 도록 하였다. 측정 결과, 도플러 초음파 검사를 통해 측정된 혈류 속도 신호에 변화가 생길 때 직물센서로 측정한 신호도 함께 변화하는 것으로 나타났다. 이를 통해 코일형 직물센서를 이용하여 뇌혈류활동 신호를 측정할 수 있다 는 것을 검증하였다. 또한, 감성평가를 위하여 ECG 신호와 PLL 신호(직물센서 신호)에서 추출한 HRV를 계산해서 비교한 결과, 시각 자극으로 인한 교감신경계와 부교감신경계의 활성화에 따른 비율의 변화에 대해서는 직물센서로 측정한 신호와 ECG 신호를 이용해 계산한 값이 비슷한 경향을 보이는 것으로 나타났다. 결론적으로, 본 연구에서 개발된 시변자계 기반의 코일형 직물 센서를 통해 뇌혈류 변화 측정 및 감성 모니터링이 가능할 것으로 사료된다.
        4,300원
        2.
        2019.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Stroke is a health problem experienced by many elderly people around the world. Stroke has a devastating effect on quality of life, causing death or disability. Hemiplegia is clearly an early sign of a stroke and can be detected through patterns of body balance and gait. The goal of this study was to determine various feature vectors of foot pressure and gait parameters of patients with stroke through the use of a wearable sensor and to compare the gait parameters with those of healthy elderly people. To monitor the participants at all times, we used a simple measuring device rather than a medical device. We measured gait data of 220 healthy people older than 65 years of age and of 63 elderly patients who had experienced stroke less than 6 months earlier. The center of pressure and the acceleration during standing and gait-related tasks were recorded by a wearable insole sensor worn by the participants. Both the average acceleration and the maximum acceleration were significantly higher in the healthy participants (p < .01) than in the patients with stroke. Thus gait parameters are helpful for determining whether they are patients with stroke or normal elderly people.
        4,000원
        3.
        2018.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 연구에서는 센서의 표면적 변화에 따른 입체적 호흡수 센서의 센싱 방식을 제안하고, 직물 기반의 입체적 호흡수 센서의 성능 평가 및 의복에 적용할 수 있는 디자인 방향성을 탐색하고자 한다. 이를 위해 입체적 구조의 차이에 따라 2가지 유형의 입체적 호흡수 센서를 제작하고 더미와 인체 대상으로 연구를 실시하였다. 연구Ⅰ은 더미 대상 실험으로 센서의 유형 및 호흡 속도의 연구변인에 의해 입체적 호흡수 센서의 측정 가능성을 탐색하였다. 연구Ⅱ는 7명의 20대 남성을 대상 실험으로 연구Ⅰ의 연구변인 이외에 3개의 측정 위치별 적합한 유형의 센서를 제안하였다. 입체적 호흡수 센서의 정확도, 재현성, 신뢰도를 평가하기 위해, 의료기기 분야의 대표적 웨어러블 호흡수 센서인 BIOPAC을 사용하여 입체적 호흡수 센서와 동시에 호흡수를 측정하였다. 이상의 연구 결과를 통해 더미 대상으로 입체적 호흡수 센서의 측정 가능성을 탐색하였으며, 인체 대상으로 호흡수를 측정하여 측정 위치별 적합한 유형의 센서를 제안하였다.
        4,000원
        4.
        2015.06 구독 인증기관 무료, 개인회원 유료
        Global interest in smart-wear has risen rapidly in the 21stcentury. “Smart-wear” is one application of intelligent textiles and refers to all clothes made with intelligent textiles (or those that are a convergence). New developments represent a positive opportunity for the fashion industry to integrate new technologies to evolve. Smart-wear also includes wearable computers or digital clothing defined as “garment-integrated devices which augment the functionality of clothing, or which impart information-processing functionality to a garment”. The garment is an ideal interface medium between humans and electronic products due to interaction and technologies in the fashion industry. Smart-wear represents the future of both the textile/clothing industry and electronic industry. Smart-wear for transformable garments allow the conversion of aesthetics and functionality into multiple looks and functions that satisfy various user needs and wants. Smart-wear offers a potential paradigm shift. Precedent studies have focused on the role of transformation to understand the relationship and interaction between humans and new digital technologies (Petersen, Iversen, Krogh, & Ludvigsen, 2004). Hussein Chalayan created aa transformer dress that can twitch and reconfigure. The long Victorian dress hemline contracts into a flapper style dress. Berzowska created dresses that use shape memory alloys to move and change in continuous motions (Ariyatum & Holland, 2003).Perocich used a pneumatic approach to lift garments and change the appearance of clothes (von Radziewsky, Krüger, & Löchtefeld, 2015).Lee & Kim(2014) built a shape-changing dress which apply fabric properties and illuminance sensor to fold pleats. The idea of changing the overall appearance of clothes seems promising. Contemporary smart-wear has various functions that include sensing, actuating, powering, generating, storing, communicating, data processing and connecting. Technologies to develop digital applications can be easily controlled by smart-wear using an Arduino (Na & Cho, 2009). An embedded system for using Arduino can be worn like clothing or an accessory that is a favorable for shop window display. Shop window displays of fashion products have cultural consumption and fashioned identities that have developed into forms of art themselves and produce interesting imagery within fashion culture. In recent decades store window displays have become a unique form of advertising and are the first point of contact between the shop and the shopper (Crewe, 2015). The shop window display design might not instantly attract attention until the shopper realizes its interactive aspects. Such an interaction visually reveals a relationship between the store window and shopper's reaction. In order to connect these shop window displays with an interactive fashion design, this paper aims to illustrate how these concepts fit into the prototype. This paper develops a prototype of Wearable Shape-Changing (WSC) that deforms the fabric for pleat making on clothing for a store window dummy. Data processing is created by the motion of a shopper for the input functionality to discriminate between different shopper motions using the Microsoft Kinect sensor. A concealed Kinetic system scans every part of shopper’s joint for skeleton extraction when the shopper is outside the shop window. It is able to detect the shopper’s simple motion and simultaneously deliver information to the Arduino in the system. The prospective fashion display system needs to be devised based on a more serious technical method that utilizes information on the physical properties of fabrics to facilitate development in the store window. There has been some discussion on how fabrics could create foldable clothing items; in addition, a range folding techniques has been extended to e-textile due to useful characteristics (Perovich, Mothersill, & Farah, 2014). The experiments performed in this paper allows observers to examine basic fabric characteristics and physical properties. The behavior changes during fold deformation and the recovery process as well as identifies correlations between stiffness and recovery rate. As an experimental sample, this paper selects 2 types of fabric that have relatively stiff characteristics of a organza (one is 100% silk and the other is 100% polyester). The pleats type selects a diamond-pattern and the pleats finishing process employs a heat-setting method commonly used in the fashion industry. The results were as follows: The Silk organza has 66 weight(g/㎡) and 0.17 nominal thickness (㎜) and the Polyester organza has 39.6 weight(g/㎡) and 0.11 nominal thickness (㎜). Both silk and polyester samples have the large stiffness value in the weft direction. Tensile properties resulted in similar values in both the warp and in the weft directions. Polyester has a great thermothermos plasticity, unique resilience, providing good pleats retention and crease recovery while silk has a low wrinkle recovery. However, silk has identical recovery rate in first and second elongation deformations for diamond-pattern pleats. The diamond-pattern also has a significant correlation with the warp and bias directions. Thus, folding composition should consider the directions of the fabric according to folding technique. Based on the experiment’s results among fabric samples’ physical properties of silk were chosen for the prototype. In the prototype, the shop window displaying dummy wears a long dress, but it is designed to become shorter when the shopper lifts the arm. The mechanism by the operating design pulls the hemline in the front up to the lower thigh when the kinetic sensor detects motion. As a means of visual communications or expression of the shopper’s mood, illuminance may be attached according to the shopper’s discretion. The advantage of the WSC dress compared to a traditional static dress is that the transforming shape occurs immediately by means of interaction. Future studies, different approaches were proposed to clothing both hand and finger movements in a mobile environment. This paper focuses on a set of alliances between technology and fashion/textiles, with the WSC designed as an interface to be used for both purposes. This study represents a bridge between fashionable technologies and informative material properties. It represents a small first step from static dynamic fashion to dynamic interactive fashion.
        3,000원
        5.
        2018.12 KCI 등재 서비스 종료(열람 제한)
        The recent prosthetic technologies pursue to control multi-DOFs (degrees-of-freedom) hand and wrist. However, challenges such as high cost, wear-ability, and motion intent recognition for feedback control still remain for the use in daily living activities. The paper proposes a multi-channel knit band sensor to worn easily for surface EMG-based prosthetic control. The knitted electrodes were fabricated with conductive yarn, and the band except the electrodes are knitted using non-conductive yarn which has moisture wicking property. Two types of the knit bands are fabricated such as sixteen-electrodes for eight-channels and thirty-two electrodes for sixteen-channels. In order to substantiate the performance of the biopotential signal acquisition, several experiments are conducted. Signal to noise ratio (SNR) value of the knit band sensor was 18.48 dB. According to various forearm motions including hand and wrist, sixteen-channels EMG signals could be clearly distinguishable. In addition, the pattern recognition performance to control myoelectric prosthesis was verified in that overall classification accuracy of the RMS (root mean squares) filtered EMG signals (97.84%) was higher than that of the raw EMG signals (87.06%).