X-chromosome inactivation is one of the most complex events observed in early embryo developments. The epigenetic changes occurred in female X-chromosome is essential to compensate dosages of X-linked genes between males and females. Because of the relevance of the epigenetic process to the normal embryo developments and stem cell studies, X-chromosome inactivation has been focused intensively for last 10 years. Initiation and regulation of the process is managed by diverse factors. Especially, proteins and non-coding RNAs encoded in X-chromosome inactivation center, and a couple of transcription factors have been reported to regulate the event. In this review, we introduce the reported factors, and how they regulate epigenetic inactivation of X-chromosomes.
Several studies have been conducted with the aim of establishing embryonic stem cell lines from porcine embryos. However, most researchers to date have found it difficult to maintain an ES-like state in derived cell lines, with the cells showing a strong tendency to differentiate into an epithelial or EpiSC-like state. We have also been able to derive cell lines of an EpiSC-like state and a differentiated non-ES-like state from porcine embryos of various origins, including invitro fertilized(IVF), in vivo derived, IVF aggregated and parthenogenetic embryos. In addition, we have generated induced pluripotent stem cells(piPSCs) via plasmid transfection of reprogramming factors (Oct4, Sox2, Klf4 and c-Myc) into porcine fibroblast cells. X chromosome inactivation (XCI) have recently been addressed as a hallmark to determine whether pluripotent cell is naïve or primed state. In this study, we could confirm the X chromosome inactivation status in female cell lines as well as marker expression, pluripotency and of our Epi- SC-like pESC lines along with our piPSC line. All of our cell lines showed AP activity and expressions of the genes Oct4, Sox2, Nanog, Rex, TDGF1, bFGF, FGFR1, FGFR2, Nodal and Activin-A involved in pluripotency and signaling pathways, XCI in female cell lines, in vitro differentiation potential and a normal karyotype, thus displaying similarities to epiblast stem cells or hES cells. Therefore, it may be inferred that, as a non-permissive species, the porcine species undergoes reprogramming into a primed state during the establishment of pluripotent stem cell lines.
X chromosome inactivation (XCI) is a process that enables mammalian females to ensure the dosage compensation for X-linked genes. Investigating the mechanism of XCI might provide deeper understandings of chromosomal silencing, epigenetic regulation of gene expressions, and even the course of evolution. Studies on mammalian XCI conducted with mice have revealed many fundamental findings on XCI. However, difference of murine and human XCI necessitates the further investigation in human XCI. Recent success in reprogramming of differentiated cells into pluripotent stem cells showed the reversibility of XCI in vitro, X chromosome reactivation (XCR), which provides another tool to study the change in X chromosome status. This review summarizes the current knowledge of XCI during early embryonic development and describes recent achievements in studies of XCI in reprogramming process.