Once discharged, spent nuclear fuel undergoes an initial cooling process within deactivation pools situated at the reactor site. This cooling step is crucial for reducing the fuel’s temperature. Once the heat has sufficiently diminished, two viable options emerge: reprocessing or interim storage. A method known as PUREX, for aqueous nuclear reprocessing, involves a chemical procedure aimed at separating uranium and plutonium from the spent nuclear fuel. This separation not only minimizes waste volume but also facilitates the reuse of the extracted materials as fuel for nuclear reactors. The transformation of uranium oxides through dissolution in nitric acid followed by drying results in uranium taking the form of UO2(NO3)2 + 6H2O, which can then be converted into various solid-state configurations through different heat treatments. This study specifically focuses on investigating the phase transitions of artificially synthesized UO2(NO3)2 + 6H2O subjected to heat treatment at various temperatures (450, 500, 550, 600°C) using X-ray Diffraction (XRD) analysis. Heat treatments were also conducted on UO2 to analyze its phase transformations. Additionally, the study utilized XRD analysis on an unidentified oxidized uranium oxide, UO2+X, and employed lattice parameters and Bragg’s law to ascertain the oxidation state of the unknown sample. To synthesize UO2(NO3)2 + 6H2O, U3O8 powder is first dissolved in a 20% HNO3 solution. The solid UO2(NO3)2 + 6H2O is obtained after drying on a hotplate and is subsequently subjected to heat treatment at temperatures of 450, 500, 550, and 600°C. As the heat treatment temperature increases, the color of the samples transitions from orange to dark green, indicating the formation of different phases at different temperatures. XRD analysis confirms that uranyl nitrate, when heattreated at 500 and 550°C, oxidizes to UO3, while the sample subjected to 600°C heat treatment transforms into U3O8 due to the higher temperature. All samples exhibit sharp crystal peaks in their XRD spectra, except for the one heat-treated at 450°C. In the second experiment, the XRD spectra of the heat-treated UO2 consistently indicate the presence of U3O8 rather than UO3, regardless of the temperature. Under an oxidizing atmosphere within a temperature range of 300 to 700°C, UO2 can be oxidized to form U3O8. In the final experiment, the oxidation state of the unknown UO2+X was determined using Bragg’s law and lattice parameters, revealing that it was a material in which UO2 had been oxidized, resulting in an oxidation state of UO2.24.
In this study, the chemical deformation of cement pastes was determined by chemical analysis. X-ray diffraction equipment was used to investigate the chemical transformation. The decrease of ettringite and the collapse of gypsum were confirmed and then the calcium hydroxide gradually decreased.
2000년과 2007년 한국해양연구원에서 채취한 황해남동부, 한국남해 및 제주도 남단 해역의 표층 퇴적물 시료 131정점에 대하여 정량X선 회절분석법을 이용하여 광물조성을 구한 후, 이를 이용하여 각광물의 분포도를 작성하여, 연구 해역 퇴적물의 근원지를 추정하였다. 연구지역 표층퇴적물은 조암광물(석영 37.4%, 사장석 11.7 %, 알카리장석 5.5%, 각섬석 3.1%), 점토광물(일라이트 19.2%, 녹니석 4.7%, 카올리나이트 1.8%) 및 탄산염광물(방해석 10.7%, 아라고나이트 3.4%)로 구성되어 있다. 점토광물의 분포는 세립질 퇴적물의 분포 양상과 거의 비슷한데, 특히 흑산니질대(HSMD: Hucksan Mudbelt Deposit), 한국남해니질대(SSKMD: South Sea of Korea Mudbelt Deposit) 그리고 제주니질대(JJMD: Jeju Mudbelt Deposit)의 분포 양상과 대부분 일치한다. 지난 최후 빙기의 잔류퇴적물로 생각되는 연구지역 내 조립질 퇴적물은 조암광물을 많이 포함하며, 그 상부에 퇴적된 세립질 퇴적물은 점토광물을 많이 포함하고 있다. 연구해역의 점토광물 조성과 주요해류의 흐름 및 지리적인 요소를 고려하면 흑산니 질대와 한국남해니질대는 주로 한반도 기원의 세립질 퇴적물이 퇴적된 것으로 추정되며, 제주니질대는 한반도뿐만 아니라 원양의 부유퇴적물이 복합적으로 퇴적된 것으로 판단된다.
점토광물들은 지질환경에 따라 다양한 화학성분을 갖게되는데, 화학성분의 변화는 X-선 회절도형 회절선 intensity에도 영향을 미치기 때문에 점토광물들의 정확한 정량분석을 위하여서는 유사한 화학식을 표준시료를 필요로 하게 된다. 대부분의 경우 특정성분의 표준시료를 확보하기 어렵지만, X-선 회절도형 계산방법을 응용하면 표준시료를 사용하지 않고 점토광물들의 정량분석을 실시할 수 있다. 대부분 심해저 퇴적물은 smectite, illite, chlorite, kaolinite듣 점토광물들을 함유하고 있는데, 특정한 화학성분을 갖는 이러한 네가지 점토광물들의 X-선 회절도형을 NEWMOD 프로그램을 이용하여 계산하였다. smectite와 illite의 001 회절선, chlorite의 004회절선, kaolinite의 002회적선의 이론적 peak intensity들을 계산된 X-선 회절도형으로부터 구하여 각 광물들의 MIF(Mineral Intensity Factor)값을 결정하였다. 실험에서 얻어진 시료의 peak intensity는 MIF값을 이용하여 교정하면 peak intensity값과 각 광물들의 wt%가 비례하도록 된다. 각 광물들의 wt% 총합계는 100wt%가 되도록 설정한 후 각 광물들의 구성비율을 이용하여 정량화 하였다. 이러한 정량분석방법은 분석하려는 광물의 화학식과 거의 비슷한 표준시료를 준비하지 않아도 되기때문에, X-선 회절도형의 계산방법을 이용한 정량분석은 표준시료를 구할 수 없거나 구하기 힘든 경우 유용하게 사용될 수 있다. 회절도형계산을 이용한 정량분석 방법은 서로 비슷한 지질환경에서 산출된 점토광물들을 대량으로 빠른 시간내에 분석하는데 이용할 수 있다.