검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 4

        1.
        2003.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        여러 지질재해 중에서 산사태로부터 피해를 최소화하기 위해서는 미래의 산사태에 대해 취약한 지역의 추정이 필요하다. 산사태 위험성의 정량적 분석을 목적으로, 본 논문에서는 확률론적 공간통합 방법인 베이지안 기법의 적용가능성에 대해서 논의하고자 한다. 우선 산사태 발생과 관련이 있는 여러 공간자료의 확률론적 표현을 위해 우도비 함수를 사용하였으며, 베이지안 결합 규칙을 이용하여 최종적으로 통합된 검증을 수행하였다. 이러한 방법의 적용가능성을 검토하기 위하여 1998년 여름 산사태 공간 분포의 분할을 통한 검증을 수행하였다. 이러한 방법의 적용가능성을 검토하기 위하여 1998년 여름 산사태로 피해를 입은 경기도 장흥지역을 대상으로 사례연구를 수행하였다. 사례연구 수행 결과, 우도비에 기반한 베이지안 공간 통합 기법은 효율적으로 다양한 공간 자료를 통합할 수 있었으며, 검증결과는 해석과 의사결정 보조자료로 이용될 수 있을 것으로 기대된다.
        4,300원
        2.
        2015.02 서비스 종료(열람 제한)
        본 연구에서는 Bayesian 통계기법을 활용한 지역빈도해석 모형을 기반으로 외부 기상인자 및 공간정보에 의한 확률강우량의 변동성을 고려할 수 있는 Bayesian 지역빈도해석 기법을 개발하였다. 기존 지역빈도해석에서 분석시 확률분포형의 매개변수는 과거와 일정하다는 정상성을 기본 가정으로 연구를 진행해 왔다. 이는 평균의 변동성 및 확률강우량 추정시 최근 기후변화의 영향을 효과적으로 고려하지 못하는 단점이 존재하였다. 또한 우리나라의 경우 산악지형이 약 70% 이상을 차지할 정도로 지형적 및 계절적으로 강수량 패턴이 불분명하여 확률강우량 추정시 공간적 변동성을 고려할 수 있는 새로운 개념의 지역빈도해석의 필요성이 대두되고 있다. 최근 국내 연구에서는 유역내 면적강우량 환산시 극치계열의 강수자료를 이용하여 지점빈도해석(point frequency analysis, PFA) 또는 지역빈도해석(regional frequency analysis, RFA)을 수행하여 수자원 설계에 이용되고 있다. 그러나 기존 지역빈도해석연구에서 매개변수 산정시 외부인자(covariate)를 고려할 수 없는 단점이 존재하며, 불확실성을 정량적으로 해석하는데 어려움이 있다. 이와 더불어 기존 RFA에서는 관측지점을 중심으로 산정된 확률강우량은 Thiessen망을 통해 유역면적강우량으로 변환하여 사용하는 것이 일반적이나 우리나라의 산지특성과 여름철 강우처럼 시공간적 변동성이 큰 경우 면적평균강우를 추정하는데 있어서 오차가 크게 발생할 수 있다고 알려지고 있다. 이러한 이유로 본 연구에서는 Bayesian 통계기법을 활용하여 매개변수 추정시 기상인자 및 공간정보가 고려된 지역빈도해석을 수행할 수 있는 모형을 개발하였으며 다음과 같이 연구를 진행하였다. 첫째, 한강유역내 18개 관측소를 대상으로 연도별 여름강수량을 추출하고 이들 관측소의 여름강수에 물리적인 영향을 미치는 기상인자로서 SST(sea surface temperature)를 외부인자로 채택하였다. 둘째, 극치분포를 잘 재현한다고 알려져 있는 Gumbel 분포를 확률분포형으로 선정하였으며, Gumbel 분포 매개변수 산정시 앞서 추출한 SST와 한강 유역내 공간정보를 활용하여 매개변수를 산정하였다. 마지막으로 Bayesian 기법을 도입하여 산정된 매개변수의 불확실성 구간을 제시하였으며, 추정된 확률강우량 또한 불확실성 구간을 제시하여 신뢰성 있는 연구를 수행하였다.
        3.
        2014.05 KCI 등재 서비스 종료(열람 제한)
        본 연구에서는 지역특성(위도, 경도, 고도)과 기후학적 특성(연최대강우량)을 계층적 Bayesian 모형안에서 연계하여 공간적 분석이 가능한 지역빈도해석 모형을 개발하였다. 기존 지역빈도해석은 강수지점의 지리적/지형적 특성을 반영한 해석이 어려운 단점이 있으며, 지점을 기준으로 해석된 확률강수량을 유역면적강우량으로 변환 시 불확실성이 큰 단점이 있다. 이에 본 연구에서는 계층적 Bayesian 기법을 이용하여 지역특성 및 기후학적 특성이 고려된 Gumbel 확률분포형의 매개변수를 추정하였으며, 이들 매개변수들을 공간적으로 보간하여 한강유역내 모든 지점에 대해서 확률강수량을 추정할 수 있도록 하였다. 결과적으로 기존 L-모멘트 방법과 유사한 결과를 확인할 수 있었으며 확률강수량의 불확실성 정량화와 더불어 지리적/지형적 영향을 고려한 해석이 가능하였다.
        4.
        2011.12 KCI 등재 서비스 종료(열람 제한)
        This study applied the Bayesian method for the quantification of the parameter uncertainty of spatial linear mixed model in the estimation of the spatial distribution of probability rainfall. In the application of Bayesian method, the prior sensitivity analysis was implemented by using the priors normally selected in the existing studies which applied the Bayesian method for the puppose of assessing the influence which the selection of the priors of model parameters had on posteriors. As a result, the posteriors of parameters were differently estimated which priors were selected, and then in the case of the prior combination, F-S-E, the sizes of uncertainty intervals were minimum and the modes, means and medians of the posteriors were similar to the estimates using the existing classical methods. From the comparitive analysis between Bayesian and plug-in spatial predictions, we could find that the uncertainty of plug-in prediction could be slightly underestimated than that of Bayesian prediction.