In this study, uncertainty ranges for bias-corrected temperature and precipitation in seven metro-cities were estimated using nine GCM-RCM Matrix, and climate changes were predicted based on the corrected temperature and precipitation. During the present climate (1981-2005), both uncertainties for annual temperature and precipitation and differences in regional uncertainties were reduced by bias correction methods. Model’s systematic errors such as cold bias of surface air temperature and underestimated precipitation during the second-Changma period were improved by a bias correction method. Uncertainties of annual variations for bias corrected temperature and precipitation were also decrease. Furthermore, not only mean values but also extreme values were improved by bias correction methods. During the future climate (2021-2050), differences in temperature and precipitation between two RCP scenarios (RCP4.5/8.5) were not quite large. Temperature had an obvious increasing tendency, while future precipitation did not change significantly compared to present one in terms of mean values. Uncertainties for future biascorrected temperature and precipitation were also reduced. In mid-21st centuries, models prospected that mean temperature increased thus lower extremes associated with cold wave decreased and upper extremes associated with heat wave increased. Models also predicted that variations of future precipitation increased thus the frequency and intensity of extreme precipitation increased.
최근 기후변화로 인하여 발생하는 기상재해 및 위험기상 현상의 대비를 위하여 조밀한 시공간적 해상도를 갖는 레이더 강우가 활용되고 있지만 널리 사용되는 Marshall-Palmer의 Z-R 관계식으로 추정된 레이더 강우는 과소추정의 문제점이 있다. 본 연구는 이러한 문제점을 해결하기 위하여 분위회귀 분석기법을 통한 레이더 강우자료 편의보정 기법과 Copula 함수를 연계한 강우자료 확충기법을 개발하였다. 본 연구에서 개발된 모형을 통하여 편의가 보정된 시계열 레이더 강우자료 효율을 통계적으로 분석한 결과 우수한 모형성능을 확인하였으며 Copula 기법을 이용하여 지상강 우 및 레이더 강우자료를 확충한 결과 기존의 강우특성을 현실적으로 재현하는 것을 확인하였다. Copula 기법을 통한 강우자료 확충기법은 레이 더 강우의 오차분포를 평가하는데 유용하게 활용될 것으로 판단된다.
이중편파레이더는 강수의 형태를 구분하고 대기 중의 기상 현상뿐만 아니라 비강수에코에 대한 정보를 제공하기 때문에 보다 정확한 강수량 추정을 가능하게 한다. 그러나 수직, 수평으로 진동하는 전파를 송 수신하여 생성되는 이중편파레이더 관측변수들은 레이더 자체가 갖는 시스템적 관측오차를 포함하기 때문에 정량적 강수량 추정을 위해서는 이에 대한 보정이 필수적이다. 본 연구에서는 2차원 영상우적계(2-Dimensional Video Disdrometer, 이하 2DVD) 관측 자료를 이용하여 비슬산 이중편파레이더가 갖는 Z, ZDR 관측오차를 계산한 후, 관측오차 보정에 따라 강수량이 정량적으로 얼마나 개선되는지를 살펴보았다. 총 33강수사례에 대한 분석결과, Z는 약-0.3~5.5 dB, ZDR는 -0.1~0.6 dB의 관측오차를 가지며, 대부분의 사례에서 Z와 ZDR는 모의된 값보다 낮게 관측하였다. 관측오차를 보정한 전 후 산출된 이중편파레이더 강수량 추정값을 지상관측 강우강도와 비교한 결과, 평균 bias와 RMSE는 각각 1.54 mm/hr, 1.73 mm/hr로 보정 전의 1.69 mm/hr, 2.54 mm/hr 보다 감소함으로써 지상우량계 관측값 대비 레이더 강수량 추정값이 약 7~61% 향상되었다.
In this paper, a localization error recovery method based on bias estimation is provided for outdoor localization of mobile robot using different-type sensors. In the previous data integration method with DGPS, it is difficult to localize mobile robot due to multi-path phenomena of DGPS. In this paper, fault data due to multi-path phenomena can be recovered by bias estimation. The proposed data integration method uses a Kalman filter based estimator taking into account a bias estimator and a free-bias estimator. A performance evaluation is shown through an outdoor experiment using mobile robot.