본 연구에서는 rf PECVD(13.56MHz)법을 이용하여 CH4가스에 소량의 보조가스(O2와 N2)를 혼합하여 a-C:H 박막을 얻었다. 이렇게 얻어진 박막의 증착속도는 rf power 증가에 따라서 증가하다가 200W에서는 다시 감소하였으며, 산소와 질소가스의 유량이 증가함에 따라 감소하였다. FT-IR분석으로 계산된 박막내의 수소함량은 rf power 증가와 산소 및 질소첨가량의 증가에 따라 감소하였다. 산소가스 첨가 시에는 C=O 결합이 생성되며, 질소가스 첨가 시에는 C=N 결합이 생성됨을 FT-IR 분석을 통하여 알 수 있었다. 이와 같이 산소와 질소를 보조가스로 첨가할 경우에 스퍼터링 효과로 박막내의 수소함량 감소와 더불어 a-C:H 박막의 구조 변화를 일으킬 수 있을 것으로 생각된다. Raman 분석결과 산소와 질소를 첨가함에 따라서 I(sub)D/I(sub)G비가 증가하였고, D line과 G line의 위치가 높은 파수 쪽으로 이동하였으며, D line의 폭은 넓어지는 반면에 G line의 폭은 감소됨을 보였다. 이것은 산소와 질소의 첨가로 박막내의 수소함량 감소, 결합각의 disorder 감소 및 micro-crystallite 흑연의 형성에 의한 것이라고 판단된다.
Cu-P계, 4종의 Cu-P-Pn계 및 3종의 Cu-P-Sn-Ag계 용가재를 사용해 Ar분위기 하에서 1003 및 1033K로 1.2Ks동안 노브레이징한 ST304, STS430 및 저탄소강과 동 접합체들을 전단시험 및 조직시험하였다. 계면에서의 미세조직은 제 종류 즉 첫째,균열을 포함하는 반응층 둘째, 분산층 세째, 균열을 포함하는 반응층과 분산층으로 분류된다. 분산층만이 존재할때 40-60MPa 이상의 상대적으로 높은 전단강도가 얻어지며, 동모재파단을 일으킨다. 이 반응층이 형성되었을때는 반드시 균열이 형성되며, 낮은 전단강도를 나타내고 접합부파단을일으킨다. 이 반응층은 Fe-P계의 화합물이다. 이러한 미소조직 및 강도 경향은 용가재내 Sn의 존재 및 모재내 Ni(또한 Cr)의 존재 유무에 따라 변화한다.
첨가원소를 달리한 두 종류의 삽입금속 Cu-10tw% Ti합금과 Cu-7.5wt% Zr 합금을 사용하여 알루미나와 304 스테인레스강을 활성브레이징법으로 접합하였을 때 두 접합체 계면의 반응층생성구조를 비교조사하여 다으모가 같은 결과를 얻었다. Cu-10tw% Ti삽입금속을 사용한 접합체의 알루미나쪽 반응층은 단층구조를 이루고 있었으나 Cu-7.5wt% Zr삽입금속을 사용한 경우 반응층은 이중구조를 이루고 있었다. 이는 두 종류의 서로 다른 삽입금속이 용융상태에서 알루미나 표면에 갖는 젖음성(wettability)차이에 기인하는 것으로 사료되며 이러한 반응층의 생성구조는 접합강도에 지대한 영향을 미치는 것으로 확인되었다. Cu-10wt% Ti 삽입금속을 사용한 경우 모든 접합조건에서 열응력에 의한 모서리 균열(dege crack)이 관찰되었으나 Cu-7.5wt% Zr 삽입금속을 사용한 경우 적정 접합조건을 선정하면 반응층의 이중구조를 통애 열응력을 완화시킴으로써 균열발생을 억제하여 1323K × 0.6Ks의 접합조건에서 비교적 높은 약 86MPa의 전단강도값을 얻을 수 있었다.
본 연구는 부착재료의 변화 및 동결융해에 따른 FRP-콘크리트구조물 경계면의 거동을 조사하였다. 실험 시 고려된 연구변수로는 부착경계면의 부착강도, 경계면 유효부착길이 등을 조사하였다. 경계면 부착재료에 따른 거동변화 실험체의 경우 FRP-구조물 부착경계면에 사용되는 에폭시의 종류를 각각 3가지로 분류하며 FRP-콘크리트간 다양한 부착길이를 고려하여 시편을 제작하였으며 동결융해에 따른 경계면 거동조사의 경우 0 cycle에서 300cycle까지 계속적으로 증가되는 주기에 대하여 실험체들을 제작, 장기거동 부착실험을 수행하였다. 본 실험결과, 적용 부착재료의 종류에 따라 최대 유효부착길이는 5~7% 차이가 있었으며 동결융해 주기증가에 따른 최대부착하중 및 유효부착길이의 경우 초기에 나타난 급격한 거동변화 이후 상대적으로 불규칙한 변화를 장기적으로 나타내었다.