검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 111

        61.
        2016.04 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Fabrication of iron oxide/carbon nanotube composite structures for detection of ammonia gas at room temperature is reported. The iron oxide/carbon nanotube composite structures are fabricated by in situ co-arc-discharge method using a graphite source with varying numbers of iron wires inserted. The composite structures reveal higher response signals at room temperature than at high temperatures. As the number of iron wires inserted increased, the volume of carbon nanotubes and iron nanoparticles produced increased. The oxidation condition of the composite structures varied the carbon nanotube/iron oxide ratio in the structure and, consequently, the resistance of the structures and, finally, the ammonia gas sensing performance. The highest sensor performance was realized with 500 oC/2 h oxidation heat-treatment condition, in which most of the carbon nanotubes were removed from the composite and iron oxide played the main role of ammonia sensing. The response signal level was 62% at room temperature. We also found that UV irradiation enhances the sensing response with reduced recovery time.
        4,000원
        62.
        2015.07 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study fabricated low thermal conductive polyacrylonitrile (PAN)-based carbon fibers containing cellulose particles while maintaining their mechanical properties. The high thermal conductivity of carbon fibers limits their application as a high temperature insulator in various systems such as an insulator for propulsion parts in aerospace or missile systems. By controlling process parameters such as the heat treatment temperature of the cellulose particles and the amount of cellulose added, the thermal and mechanical properties of the PANbased carbon fibers were investigated. The results show that it is possible to manufacture composite carbon fibers with low thermal conductivity. That is, thermal conductivities were reduced by the cellulose particles in the PAN based carbon fibers while at the same time, the tensile strength loss was minimized, and the tensile modulus increased.
        4,000원
        63.
        2015.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Impact damages induced by a low-velocity impact load on carbon fiber reinforced polymer (CFRP) composite plates fabricated with various stacking sequences were studied experimentally. The impact responses of the CFRP composite plates were significantly affected by the laminate stacking sequences. Three types of specimens, specifically quasi-isotropic, unidirectional, and cross-ply, were tested by a constant impact carrying the same impact energy level. An impact load of 3.44 kg, corresponding to 23.62 J, was applied to the center of each plate supported at the boundaries. The unidirectional composite plate showed the worst impact resistance and broke completely into two parts; this was followed by the quasi-isotropic lay-up plate that was perforated by the impact. The cross-ply composite plate exhibited the best resistance to the low-velocity impact load; in this case, the impactor bounced back. Impact parameters such as the peak impact force and absorbed energy were evaluated and compared for the impact resistant characterization of the composites made by different stacking sequences.
        4,000원
        64.
        2015.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Single-walled carbon nanotubes (SWNTs) was modified with various length of linear alkyl chains and passivated to form dielectric filler. The modified SWNTs embedded into epoxy matrix to fabricate a flexible composite with high dielectric constant. The dielectric behavior of the composite was significantly changed with various alkyl chain length(n) of pyrene. The dielectric constant of the epoxy/SWNTs composite significantly increased with respect to increase in length of alkyl chain at the frequency range from 10 to 105 Hz (n=12and18). We also found that the passivated epoxy/SWNTs composite with high dielectric constant presented low dielectric loss. The resulted dielectric performances corresponded to de-bundling of nanotubes and their distribution behavior in the matrix in terms of tail length of alkyl pyrene in the passivation layer.
        4,000원
        65.
        2015.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The composite of porous silicon (Si) and amorphous carbon (C) is prepared by pyrolysis of a nano-porous Si + pitch mixture. The nano-porous Si is prepared by mechanical milling of magnesium powder with silicon monoxide (SiO) followed by removal of MgO with hydrochloric acid (etching process). The Brunauer-Emmett-Teller (BET) surface area of porous Si (64.52 m2g−1) is much higher than that before etching Si/MgO (4.28 m2g−1) which indicates pores are formed in Si after the etching process. Cycling stability is examined for the nano-porous Si + C composite and the result is compared with the composite of nonporous Si + C. The capacity retention of the former composite is 59.6% after 50 charge/discharge cycles while the latter shows only 28.0%. The pores of Si formed after the etching process is believed to accommodate large volumetric change of Si during charging and discharging process.
        4,000원
        66.
        2015.01 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The prime objective of this research was to study the influence of hot-pressing pressure and matrix-to-reinforcement ratio on the densification of short-carbon-fiber-reinforced, randomly oriented carbon/carbon-composite. Secondary objectives included determination of the physical and mechanical properties of the resulting composite. The ‘hybrid carbon-fiberreinforced mesophase-pitch-derived carbon-matrix’ composite was fabricated by hot pressing. During hot pressing, pressure was varied from 5 to 20 MPa, and reinforcement wt% from 30 to 70. Densification of all the compacts was carried at low impregnation pressure with phenolic resin. The effect of the impregnation cycles was determined using measurements of microstructure and density. The results showed that effective densification strongly depended on the hot-pressing pressure and reinforcement wt%. Furthermore, results showed that compacts processed at lower hot-pressing pressure, and at higher reinforcement wt%, gained density gradually during three densification cycles and showed the symptoms of further gains with additional densification cycles. In contrast, samples that were hot-pressed at moderate pressure and at moderate reinforcement wt%, achieved maximum density within three densification cycles. Furthermore, examination of microstructure revealed the formation of cracks in samples processed at lower pressure and with low reinforcement wt%.
        4,000원
        67.
        2014.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 연구에서는, 유기용매를 사용하지 않는 친 환경적인 건식 공정과 초임계 공정을 이용한 Thin-multiwalled carbon nanotube (TWNTs)/아민계 에폭시 첨가제의 복합체 제조에 관하여 연구를 하였다. 제조된 TWNTs/아민계 에폭시 첨가제의 복합체는 우레탄기반의 비스페놀 A 타입의 에폭시 레 진의 경화제로 사용하였다. TWNTs/아민계 에폭시 첨가제의 복합체를 경화제로 사용하여 제조된 에폭 시 레진의 열적 성질을 Dynamic mechanical analysis (DMA)를 이용하여 분석 하였으며, 메트릭스상의 carbon nanotube 의 높은 분산성은 SEM을 통하여 확인 하였다. 그 결과, 초임계 공정을 이용하여 제 조된 에폭시 레진의 열적 성질과 매트릭스내의 carbon nanotube 분산성이 건식 공정을 사용 하였을 때 보다 더욱 증가된 결과를 확인 할 수 있었다
        4,000원
        69.
        2014.05 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Silicon-carbon composite was prepared by the magnesiothermic reduction of mesoporous silica and subsequent impregnation with a carbon precursor. This was applied for use as an anode material for high-performance lithium-ion batteries. Well-ordered mesoporous silica(SBA-15) was employed as a starting material for the mesoporous silicon, and sucrose was used as a carbon source. It was found that complete removal of by-products (Mg2Si and Mg2SiO4) formed by side reactions of silica and magnesium during the magnesiothermic reduction, was a crucial factor for successful formation of mesoporous silicon. Successful formation of the silicon-carbon composite was well confirmed by appropriate characterization tools (e.g., N2 adsorption-desorption, small-angle X-ray scattering, X-ray diffraction, and thermogravimetric analyses). A lithium-ion battery was fabricated using the prepared silicon-carbon composite as the anode, and lithium foil as the counter-electrode. Electrochemical analysis revealed that the silicon-carbon composite showed better cycling stability than graphite, when used as the anode in the lithium-ion battery. This improvement could be due to the fact that carbon efficiently suppressed the change in volume of the silicon material caused by the charge-discharge cycle. This indicates that silicon-carbon composite, prepared via the magnesiothermic reduction and impregnation methods, could be an efficient anode material for lithium ion batteries.
        4,000원
        70.
        2014.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, carbon fiber reinforced plastic and aluminum foam used in impact absorber are assembled and modelled. These models are investigated by impact simulation and verified by experimental data. Impact energies of 30 J, 60 J and 100 J are applied on these specimens by striker. For example the experiment for impact energy of 30 J is done and verified by referring to analysis result. As the structural safeties of these assembled composite materials can be anticipated through this study result, these simulation analysis results can be applied into real field.
        4,000원
        71.
        2014.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        A powder-in-sheath rolling method was applied to a fabrication of a carbon nano tube (CNT) reinforcedaluminum composite. A STS304 tube with an outer diameter of 34 mm and a wall thickness of 2 mm was used as asheath material. A mixture of pure aluminum powders and CNTs with the volume contents of 1, 3, 5 vol was filled inthe tube by tap filling and then processed to 73.5% height reduction by a rolling mill. The relative density of the CNT/Al composite fabricated by the powder-in-sheath rolling decreased slightly with increasing of CNTs content, but exhib-ited high value more than 98. The grain size of the aluminum matrix was largely decreased with addition of CNTs; itdecreased from 24 µm to 0.9 µm by the addition of only 1 volCNT. The average hardness of the composites increasedby approximately 3 times with the addition of CNTs, comparing to that of unreinforced pure aluminum. It is concludedthat the powder-in-sheath rolling method is an effective process for fabrication of CNT reinforced Al matrix composites.
        4,000원
        72.
        2014.02 구독 인증기관·개인회원 무료
        본 논문에서는 탄소 섬유 강화 플라스틱 샌드위치 복합재료의 시뮬레이션 해석을 통해 기계적 충격특 성에 대해 연구를 하였다. 스트라이커에 30 J, 60 J, 100 J의 충격에너지를 부여하여 고정 된 시험편에 충격을 가했다. 시뮬레이션 해석 방법은 ANSYS를 이용하여 실제와 같은 경계조건을 주며 유한요소해 석을 진행하였다. 그 결과는 100J의 충격에 에너지를 가해졌을 때 스트라이커가 시험편을 완전히 관통하는 모습이 보이고 충격에너지 30J과 60J일 때는 스트라이커가 시험편을 관통하지 않았다. 본 연구의 결과로 탄소 섬유 강화 플라스틱과 알루미늄 폼으로 조립한 복합재료의 구조적 안전성을 예측과 구조적 안전성이 높이는 사료가 된다.
        73.
        2014.01 KCI 등재 구독 인증기관 무료, 개인회원 유료
        A microstructure analysis is carried out to optimize the process parameters of a randomly oriented discrete length hybrid carbon fiberreinforced carbon matrix composite. The com-posite is fabricated by moulding of a slurry into a preform, followed by hot-pressing and carbonization. Heating rates of 0.1, 0.2, 0.3, 0.5, 1, and 3.3°C/min and pressures of 5, 10, 15, and 20 MPa are applied during hot-pressing. Matrix precursor to reinforcement weight ra-tios of 70:30, 50:50, and 30:70 are also considered. A microstructure analysis of the carbon/carbon compacts is performed for each variant. Higher heating rates give bloated compacts whereas low heating rates give bloating-free, finemicrostructure compacts. The compacts fabricated at higher pressure have displayed side oozing of molten pitch and discrete length carbon fibers.The microstructure of the compacts fabricated at low pressure shows a lack of densification.The compacts with low matrix precursor to reinforcement weight ratios have insufficientbonding agent to bind the reinforcement whereas the higher matrix precursor to reinforcement weight ratio results in a plaster-like structure. Based on the microstructure analysis, a heating rate of 0.2°C/min, pressure of 15 MPa, and a matrix precursor to rein-forcement ratio of 50:50 are found to be optimum w.r.t attaining bloating-free densificationand processing time.
        4,000원
        74.
        2013.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Carbon nanotube-dispersed bismuth telluride matrix (CNT/Bi2Te3) nanopowders were synthesized by chem- ical routes followed by a ball-milling process. The microstructures of the synthesized CNT/Bi2Te3 nanopowders showed the characteristic microstructure of CNTs dispersed among disc-shaped Bi2Te3 nanopowders with as an average size of 500 nm in-plane and a few tens of nm in thickness. The prepared nanopowders were sintered into composites with a homogeneous dispersion of CNTs in a Bi2Te3 matrix. The dimensionless figure-of-merit of the composite showed an enhanced value compared to that of pure Bi2Te3 at the room temperature due to the reduced thermal conductivity and increased electrical conductivity with the addition of CNTs.
        4,000원
        75.
        2013.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        나노 소재는 표면적이 매우 크고 크기나 기공이 균일하여 분리막에서 물질 전달통로나 특수한 기능성을 갖게 하는 소재로 이용이 가능하다. 그중에서도, 그래핀, 그래핀 옥사이드 및 탄소나노튜브와 같은 나노탄소 구조체에 대한 연구가 활발히 이루어지고 있다. 일차원 구조를 갖는 탄소나노튜브의 경우 우수한 열적, 화학적 및 기계적 성질을 가지고 있으나, 기 존 연구에서는 주로 고분자와 혼합하여 기계적 물성을 강화하는 복합소재로서 사용됐으며, 응용분야의 한계를 가지고 있었다. 본 연구에서는 폴리 에틸렌 글리콜 다이아크릴레이트(PEGDA) 고분자 내에 개질된 탄소나노튜브를 혼합하여, 기체 분리 막에서의 투과도 및 선택도의 변화를 관찰하였다.
        4,000원
        76.
        2013.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, we present a more electrochemically enhanced electrode using activated carbon (AC)-sulfur (S) composite materials, which have high current density. The morphological and micro-structure properties were investigated by transmission electron microscopy. Quantity of sulfur was measured by thermogravimetric analysis analysis. The electrochemical behaviors were investigated by cyclic voltammetry. As a trapping carbon structure, AC could provide a porous structure for containing sulfur. We were able to confirm that the AC-S composite electrode had superior electrochemical activity.
        4,000원
        77.
        2013.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study investigated a developed process for producing a composite bipolar plate having excellent conductivity by using coal tar pitch and phenol resin as binders. We used a pressing method to prepare a compact of graphite powder mixed with binders. Resistivity of the impregnated compact was observed as heat treatment temperature was increased. It was observed that pore sizes of the GCTP samples increased as the heat treatment temperature increased. There was not a great difference between the flexural strengths of GCTP-IM and CPR-IM as the heat treatment temperature was increased. The resistivity of GPR700-IM, heat treated at 700℃ using phenolic resin as a binder, was 4829 μΩ·cm which was best value in this study. In addition, it is expected that with the appropriate selection of carbon powder and further optimization of process we can produce a composite bipolar plate which has excellent properties.
        4,000원
        78.
        2013.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Effects of the amount of nickel powder (Ni) in Ni-carbon fiber (CF) hybrid filler systems on the conductivity(or resistivity) and thermal coefficient of resistance (TCR) of filled high density polyethylene were studied. Increases of the resistivity and TCR with increasing Ni concentration at a given hybrid filler content were observed. Using the fiber contact model, we showed that the main role of Ni in the hybrid filler system is to decrease the interfiber contact resistance when Ni concentration is less than the threshold point. The formation of structural defects leading to reduced reinforcing effect resulted in both a reduction of strength and an increase of the coefficient of thermal expansion in the composite film; these changes are responsible for the increases of both resistivity and TCR with increasing Ni concentration in the hybrid filler system.
        4,000원
        79.
        2012.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        A fabrication method to improve the processability of thermoplastic carbon nanotube (CNT) mat composites was investigated by using in-situ polymerizable and low viscous cyclic butylene terephthalate oligomers. The electrical conductivity of the CNT mat composites strongly depended on the compression pressure, and the trend can be explained in terms of two cases, low and high compression pressure, respectively. High CNT mat content in the CNT mat composites and the surface of the CNT mat composites with fully contacted CNTs was achieved under high compression pressure, and direct contact between four probes and the surface of the CNT mat composites with fully contacted CNTs gave resistance of 2.1Ω. In this study the maximum electrical conductivity of the CNT mat composites, obtained under a maximum applied compression pressure of 27 MPa, was 11 904 S m-1, where the weight fraction of the CNT mat was 36.5%.
        4,000원
        80.
        2012.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Nanocomposite films were made by a simple solution casting method in which multi-walled carbon nanotubes (MWCNT) and magnetite nanoparticles (Fe3O4) were used as dopant materials to enhance the electrical conductivity of chitosan nanocomposite films. The films contained fixed CNT concentrations (5, 8, and 10 wt%) and varying Fe3O4 content. It was determined that a 1:1 ratio of CNT to Fe3O4 provided optimal conductivity according to dopant material loading. X-ray diffraction patterns for the nanocomposite films, were determined to investigate their chemical and phase composition, revealed that nanoparticle agglomeration occurred at high Fe3O4 loadings, which hindered the synergistic effect of the doping materials on the conductivity of the films.
        3,000원
        1 2 3 4 5