Photosynthesis and respiration of seagrasses are mainly controlled by water temperature. In this study, the photosynthetic physiology and respiratory changes of the Asian surfgrass Phyllospadix japonicus, which is mainly distributed on the eastern and southern coasts of Korea, were investigated in response to changing water temperature (5, 10, 15, 20, 25, and 30°C) by conducting mesocosm experiments. Photosynthetic parameters (maximum photosynthetic rate, Pmax; compensation irradiance, Ic; and saturation irradiance, Ik) and respiration rate of surfgrass increased with rising water temperature, whereas photosynthetic efficiency (α) was fairly constant among the water temperature conditions. The Pmax and Ik dramatically decreased under the highest water temperature condition (30°C), whereas the Ic and respiration rate increased continuously with the increasing water temperature. Ratios of maximum photosynthetic rates to respiration rates (Pmax : R ) were highest at 5°C and declined markedly at higher temperatures with the lowest ratio at 30°C. The minimum requirement of Hsat (the daily period of irradiancesaturated photosynthesis) of P. japonicus was 2.5 hours at 5°C and 10.6 hours at 30°C for the positive carbon balance. Because longer Hsat was required for the positive carbon balance of P. japonicus under the increased water temperature, the rising water temperature should have negatively affected the growth, distribution, and survival of P. japonicus on the coast of Korea. Since the temperature in the temperate coastal waters is rising gradually due to global warming, the results of this study could provide insights into surfgrass responses to future severe sea warming and light attenuation.
Importance of climate change and its impact on agriculture and environment has increased with the rise in the levels of Green House Gases (GHGs) in the atmosphere. To slow down the speed of climate change, numerous efforts have been applied in industrial sectors to reduce GHGs emission and to enhance carbon storage. In the agricultural sector, several types of research have been performed with emphasis on GHGs emission reduction; however, only a few work has been done in understanding the role of carbon sink on reduction in GHGs emission. In this study, we investigated ecosystem carbon balance and soil carbon storage in an agricultural paddy field. The results obtained were as follows: 1) Evaluation of soil C sequestration in paddy field was average 3.88 Mg CO2 ha-1 following NPK+rice straw compost treatment, average 3.22 Mg C ha-1 following NPK+hairy vetch treatment, and average 1.97 Mg CO2 ha-1 following NPK treatment; and 2) Net ecosystem production (NEP) during the paddy growing season was average 14.01 Mg C ha-1 following NPK+hairy vetch treatment, average 12.60 Mg CO2 ha-1 following NPK+rice straw compost treatment, and average 11.31 Mg CO2 ha-1 following NPK treatment. Therefore, it is proposed that organic matter treatment can lead to an increase in soil organic carbon accumulation and carbon sock of crop ecosystem in fields compared to chemical fertilizers.
The objective of this study was to assess the affects of various solid waste landfill methods on mass balance of carbon. Four lysimeters simulated a conventional landfill (Lys-A), a landfill recirculated only fresh leachate (Lys-B), and two landfills recirculated leachate after pretreating with ASBR (Lys-C and Lys-D) were operated over 1,600 days. Lys-D was recirculated two times of pretreated leachate volume than that of Lys-C. Mass balance of carbon was calculated considering leachate and biogas production for each lysimeter. Lys-C and Lys-D showed that there was an increase of about 3 times in total amount of COD recovered as methane than Lys-A. This results might be attributable to the activated methanogenic bacteria and the high pH of pretreated leachate. In terms of mass balance of carbon, amount of carbon converted to landfill gas in Lys-B (25.20 g/kg-dry waste) was bigger than that of Lys-A (23.64 g/kg-dry waste), while carbon conversion rate to landfill gas for Lys-A and Lys-B showed 4.80% and 4.71%, respectively. It is assumed that only fresh leachate recirculation method can increase amount of carbon converted to landfill gas resulting from the biodegradation of organic carbon in recirculated leachate. However, in comparison with the conventional landfill method, this method should not accelerate hydrolysis of carbon from the wastes. Carbon conversion rate in the landfill recirculated leachate after pretreating with ASBR was increased due to accelerated anaerobic metabolism processes of the microbes. In Lys-C and Lys-D, about 5.9% of carbon was converted to landfill gas. Therefore, it could be seen that the landfill recirculated leachate after pretreating with ASBR could enhance carbon conversion to landfill gas more than the conventional landfill or the landfill recirculated only fresh leachate.