검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 5

        1.
        2023.11 구독 인증기관·개인회원 무료
        Wet solid wastes including spent ion exchange resins, evaporator concentrates and sludges require solidification to transform wastes into an acceptable solid, monolithic form for final disposal. The development of the process control program for the solidification of radioactive sludges generated at nuclear power plants has been in progress to provide reasonable assurance that the solidified product will meet the established waste acceptance criteria for solidified waste. A mobile solidification system to produce the solidified waste in the size of a 200 L drum was used, which adopts the in-line mixing method where the waste and binder are mixed and then transferred to the disposable container. To simulate radioactive sludges, non-radioactive sludges are synthesized and the specimens are prepared by using them. The qualification tests on the prepared specimens including the compressive strength test, the thermal cycling test, the irradiation test, the leach test, the immersion test, etc. have been performed to qualify recipes for a range of waste compositions. The results of the tests will be analyzed and discussed.
        3.
        2012.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Recovery of copper powder from copper chloride solution used in leaching process was carried out using a cementation method. Cementation is a simple and economical process, necessitating less energy compared with other recovery methods. Cementation utilizes significant difference in standard reduction potential between copper and iron under standard condition. In the present research, Cementation process variables of temperature, time, and added amount of iron scraps were optimized by using design of experiment method and individual effects on yield and efficiency of copper powder recovery were investigated using bench-scale cementation reaction system. Copper powders thus obtained from cementation process were further characterized using various analytical tools such as XRF, SEM-EDS and laser diffraction and scattering methods. Cementation process necessitated further purification of recovered copper powders and centrifugal separation method was employed, which successfully yielded copper powders of more than 99.65% purity and average in size.
        4,000원
        4.
        2001.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The pack-cementation process is the method which is formed SiC coating layer to improve weak oxidation properties of CFRCs (carbon fiber-reinforced carbons). This method develops the anti-oxidation coating layer having no dimensional changes and good wetting properties. In this study to improve the oxidative resistance of the prepared 4D CFRCs, the surface of CFRCs is coated by SiC using pack cementation method. The mechanical properties of SiC-coated 4D CFRCs are measured by the 3-point bending test, and their ablation properties are investigated by the arc torch plasma test. From the results, it is found that both mechanical and ablation properties of SiC-coated 4D CFRCs are much better than bare CFRCs.
        4,000원
        5.
        2000.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Carbon fiber was reacted with gaseous silicon monoxide which is produced from pack-powder mixture at elevated temperature. As a result of the reaction, two kinds of SiC fiber were obtained. The first one was SiC fibers which were converted from carbon fiber. The fiber is constituted with polycrystal like fine grains or monolithic crystals that have a size from sub-micron to 10 μm. Their size depends on the temperature during the conversion reaction. The second one was ultra-fine SiC fibers that were found on the surface of the converted SiC fibers. The ultra-fine fibers have diameters from 0.08 to 0.2 μm and their aspect ratio were larger than 100. The chemical composit ion of the ultra-fine fibers was analyzed using an Auger electron spectroscopy. In result, the fibers consist of 51% silicon, 38% carbon and 11% oxygen by weight.
        4,000원