이 실험에서는 α-Al2O3 지지체 위에 진공 코팅(vacuum coating)과 딥 코팅(dip-coating) 기법을 사용하여 GO/γ -Al2O3 중간층을 형성하였고, 무전해도금 방식을 통해 Pd-Ag 수소 분리막을 제작하였다. Pd와 Ag는 각각 무전해도금을 통해 지지체 표면에 증착되었으며, 합금화를 위해 도금 과정 중 H2 분위기 하에서 500°C에서 18 h 동안 열처리를 진행하였다. 제 조된 분리막의 표면과 단면은 SEM을 통해 분석되었으며, Pd-Ag 분리막의 두께는 1.88 μm, GO/γ-Al2O3 중간층을 가진 Pd-Ag 분리막의 두께는 1.07 μm로 측정되었다. EDS 분석을 통해 Pd-77%, Ag-23%의 조성으로 합금이 형성된 것을 확인하 였다. 기체투과 실험은 H2 단일가스와 H2/N2 혼합가스를 이용하여 수행되었다. H2 단일가스 투과실험에서 450°C, 4 bar 조건 하에서 Pd 분리막의 최대 H2 플럭스는 0.53 mol/m²·s로, Pd-Ag 분리막의 경우 0.76 mol/m²·s로 측정되었다. H2/N2 혼합가스 실험에서 측정된 분리막의 separation factor는 450°C, 4 bar 조건에서 Pd 분리막이 2626, Pd-Ag 분리막이 13808로 나타났다.
본 실험에서는 α-Al2O3 지지체에 무전해도금을 이용하여 Pd-Ag-Cu 분리막을 제조하였다. Pd, Ag, Cu는 각각 무 전해도금을 통해 지지체 표면에 코팅하였고, 합금의 형성을 위해 무전해도금 중간에 H2, 500°C의 조건에서 18 h 동안 열처리 를 진행하였다. 이를 통해 제조된 Pd-Ag-Cu 분리막은 SEM을 통해 표면을 관찰하였으며, Pd 분리막의 두께는 7.82 μm, Pd-Ag-Cu 분리막의 두께는 3.54 μm로 측정되었다. EDS와 XRD 분석을 통해 Pd-Ag-Cu 합금이 Pd-78%, Ag-8.81%, Cu-13.19%의 조성으로 형성된 것을 확인하였다. 기체투과 실험은 H2 단일가스와 H2/N2 혼합가스에서 실험을 진행하였다. H2 단일가스에서 측정한 수소 분리막의 최대 H2 flux는 Pd 분리막의 경우 450°C, 4 bar에서 74.16 ml/cm2·min이고, Pd-Ag-Cu 분리막의 경우 450°C, 4 bar에서 113.64 ml/cm2·min인 것을 확인하였고, H2/N2 혼합가스에서 측정한 separation factor의 경우 450°C, 4 bar에서 각각 2437, 11032의 separation factor가 측정되었다.
Carbon coils could be synthesized using C₂H₂/H₂as source gases and SF6 as an incorporated additive gas under thermal chemical vapor deposition (CVD) system. Prior to the carbon coils deposition reaction, two kinds of samples having different combination of Ni catalyst and substrate were employed, namely, a commercially-made Al₂O₃ceramic boat with Ni powders and a commercially-made Al₂O₃substrate with Ni layer. By using a commercially-made Al₂O₃ceramic boat, the synthesis of carbon coils could be enhanced as much as 10 times higher than that of Al₂O₃substrate. Furthermore, the dominant formation of the microsized carbon coils could be obtained by using Al₂O₃ceramic boat. The surface roughness of the supporting substrate of Al₂O₃ceramic boat was understood to be associated with the large scale synthesis of carbon oils as well as the dominant formation of the larger-sized, namely the microsized carbon coils.
지금까지 개발된 대부분의 세라믹 담체의 재료는 크게 알루미나와 실리카의 두 부류로 나누어지는데 소다유리를 원료로 하는 실리카 담체는 800℃ 정도의 온도에서 소결시켜 제조하나, 알루미나 원료의 담체는 1,300℃이상의 고온에서 소결 제조하여 원재료 및 제조비용이 높아 상업적 이용에 있어 경제성이 비교적 낮다는 단점이 있다. 따라서 본 연구개발은 소성을 하지 않고 무소성으로 압축강도가 향상된 세라믹담체를 제조하고 오염물질을 제거할 수 있는 미생물을 담체 제조시에 같이 혼합 제조하여 미생물담체를 제조하는 것이 1차 목표이며 다음으로 담체를 이용하여 수질오염물질을 제거하는 장치를 개발하는 것이다. 세라믹 담체의 원료가 되는 천연재료에 대한 녹조저감성능에 대한 시간대별로 흡착성능실험을 실시하고 이를 통해 녹조저감에 가장 우수한 재료을 선택하여 무소성 미생물 세라믹 담체를 개발 및 제조하였으며 비표면적과 흡수율, 압축강도, 미생물 균밀도에 대한 성능을 검사하였다. 또한, 개발된 세라믹담체의 수처리 효율을 분석하기 위해 Lab scale과 Pilot plant의 규모로 T-N, T-P, Chl-a, BOD 제거효율을 수질오염공정시험기준에 의거하여 분석하였다. 향후 무소성 세라믹 담체의 제조원료로 하수처리장에서 나오는 슬러지 및 다른 폐기물 등을 활용할 경우 폐기물의 재자원화와 생산단가 절감 등의 효과를 얻을 수 있을 것으로 판단된다.