검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 2

        1.
        2013.01 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        The microstructural evolution of AA1050/AA6061 complex aluminum alloy, which is fabricated using an accumulative roll-bonding (ARB) process, with the proceeding of ARB, was investigated by electron back scatter diffraction (EBSD) analysis. The specimen after one cycle exhibited a deformed structure in which the grains were elongated to the rolling direction for all regions in the thickness direction. With the proceeding of the ARB, the grain became finer; the average grain size of the as received material was 45μm; however, it became 6.3μm after one cycle, 1.5μm after three cycles, and 0.95μm after five cycles. The deviation of the grain size distribution of the ARB processed specimens decreased with increasing number of ARB cycles. The volume fraction of the high angle grain boundary also increased with the number of ARB cycles; it was 43.7% after one cycle, 62.7% after three cycles, and 65.6% after five cycles. On the other hand, the texture development was different depending on the regions and the materials. A shear texture component 001<110> mainly developed in the surface region, while the rolling texture components 011<211> and 112<111> developed in the other regions. The difference of the texture between AA1050 and AA6061 was most obvious in the surface region; 001<110> component mainly developed in AA1050 and 111<110> component in AA6061.
        4,000원
        2.
        2011.12 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        An ultrafine grained complex aluminum alloy was fabricated by an accumulative roll-bonding (ARB) process using dissimilar aluminum alloys of AA1050 and AA5052 and subsequently annealed. A two-layer stack ARB process was performed up to six cycles without lubricant at an ambient temperature. In the ARB process, the dissimilar aluminum alloys, AA1050 and AA5052, with the same dimensions were stacked on each other after surface treatment, rolled to the thickness reduction of 50%, and then cut in half length by a shearing machine. The same procedure was repeated up to six cycles. A sound complex aluminum alloy sheet was fabricated by the ARB process, and then subsequently annealed for 0.5h at various temperatures ranging from 100 to 350˚C. The tensile strength decreased largely with an increasing annealing temperature, especially at temperatures of 150 to 250˚C. However, above 250˚C it hardly decreased even when the annealing temperature was increased. On the other hand, the total elongation increased greatly above 250˚C. The hardness exhibited inhomogeneous distribution in the thickness direction of the specimens annealed at relatively low temperatures, however it had a homogeneous distribution in specimens annealed at high temperatures.
        4,000원