검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 31

        6.
        2015.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The galactic magnetic field (GMF) and the intergalactic magnetic field (IGMF) affect the propagation of ultra-high energy cosmic rays (UHECRs) from the source to us. Here we examine the in uences of the GMF/IGFM and the dependence of their sky distribution on galactic latitude, b. We analyze the correlation between the arrival direction (AD) of UHECRs observed by the Pierre Auger Observatory and the large-scale structure of the universe in regions of sky divided by b. Specifically, we compare the AD distribution of observed UHECRs to that of mock UHECRs generated from a source model constructed with active galactic nuclei. Our source model has the smearing angle as a free parameter that re ects the de ection angle of UHECRs from the source. The results show that larger smearing angles are required for the observed distribution of UHECRs in lower galactic latitude regions. We obtain, for instance, a 1σ credible interval for smearing angle of 0° ≤ θs ≤ 72° at high galactic latitudes, 60° < b ≤ 90°, and of 75° ≤ θs ≤ 180°, -30° ≤ b ≤ 30°, at low galactic latitudes, respectively. The results show that the in uence of the GMF is stronger than that of the IGMF. In addition, we can estimate the strength of GMFs by these values; if we assume that UHECRs would have heavier nuclei, the estimated strengths of GMF are consistent with the observational value of a few μG. More data from the future experiments may make UHECR astronomy possible.
        3,000원
        15.
        2004.12 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        A substantial number of processes have been suggested as possible contributors to the extragalactic ɤ-ray background (EGRB). Yet another contribution to this background will be emission produced in hadronic interactions of cosmic-ray protons with the cluster thermal gas; this class of cosmic rays (CRs) has been shown to be responsible for the EUV emission in the Coma Cluster of galaxies. In this paper we assume the CRs in the Coma Cluster is prototypic of all clusters and derive the contribution to the EGRB from all clusters over time. We examine two different possibilities for the scaling of the CR flux with cluster size: the number density of the CRs scale with the number density of the thermal plasma, and alternatively, the energy density of the CRs scale with the energy density of the plasma. We find that in all scenarios the EGRB produced by this process is sufficiently low that it will not be observable in comparison with other mechanisms that are likely to produce an EGRB.
        3,000원
        16.
        2004.12 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Shock waves form in the intergalactic space as an ubiquitous consequence of cosmic structure formation. Using N-body/hydrodynamic simulation data of a ACDM universe, we examined the properties of cosmological shock waves including their morphological distribution. Adopting a diffusive shock acceleration model, we then calculated the amount of cosmic ray energy as well as that of gas thermal energy dissipated at the shocks. Finally, the dynamical consequence of those cosmic rays on cluster properties is discussed.
        4,000원
        17.
        2004.12 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        During the hierarchical formation of large scale structure in the universe, the progressive collapse and merging of dark matter should inevitably drive shocks into the gas, with nonthermal particle acceleration as a natural consequence. Two topics in this regard are discussed, emphasizing what important things nonthermal phenomena may tell us about the structure formation (SF) process itself. 1. Inverse Compton gamma-rays from large scale SF shocks and non-gravitational effects, and the implications for probing the warm-hot intergalactic medium. We utilize a semi-analytic approach based on Monte Carlo merger trees that treats both merger and accretion shocks self-consistently. 2. Production of 6Li by cosmic rays from SF shocks in the early Galaxy, and the implications for probing Galaxy formation and uncertain physics on sub-Galactic scales. Our new observations of metal-poor halo stars with the Subaru High Dispersion Spectrograph are highlighted.
        4,000원
        18.
        2004.12 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        A critical discussion of our knowledge about extragalactic cosmic rays and magnetic fields is at-tempted. What do we know for sure? What are our prejudices? How do we confront our models with the observations? How can we assess the uncertainties in our modeling and in our observations? Unfortunately, perfect answers to these questions can not be given. Instead, I describe efforts I am involved in to gain reliable information about relativistic particles and magnetic fields in extragalactic space.
        4,000원
        19.
        2004.12 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Clusters of galaxies generally form by the gravitational merger of smaller clusters and groups. Major cluster mergers are the most energetic events in the Universe since the Big Bang. The basic properties of cluster mergers and their effects are discussed. Mergers drive shocks into the intracluster gas, and these shocks heat the intracluster gas. As a result of the impulsive heating and compression associated with mergers, there is a large transient increase in the X-ray luminosities and temperatures of merging clusters. These merger boost can affect X-ray surveys of clusters and their cosmological interpretation. Similar boosts occur in the strong lensing cross-sections and Sunyaev-Zeldovich effect in merging clusters. Merger shock and turbulence associated with mergers should also (re)accelerate nonthermal relativistic particles. As a result of particle acceleration in shocks and turbulent acceleration following mergers, clusters of galaxies should contain very large populations of relativistic electrons and ions. Observations and models for the radio, extreme ultraviolet, hard X-ray, and gamma-ray emission from nonthermal particles accelerated in these shocks will also be described. Gamma-ray observations with GLAST seem particularly promising.
        4,000원
        20.
        2004.12 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        I briefly review the current theoretical status of the origins of ultrahigh energy cosmic rays with special emphasis on models associated with galaxy clusters. Some basic constraints on models are laid out, including those that apply both to so-called 'top-down' and 'bottom-up' models. The origins of these UHECRs remain an enigma; no model stands out as a clear favorite. Large scale structure formation shocks, while very attractive conceptually in this context, are unlikely to be able to accelerate particles to energies much above 1018eV. Terminal shocks in relativistic AGN jets seem to be more viable candidates physically, but suffer from their rarity in the local universe. Several other, representative, models are outlined for comparison.
        4,000원
        1 2