The stability of liquid ferrate(Ⅵ) produced by an innovative method was confirmed and the degradation characteristics of cyclic compounds(Benzene, Aniline, Toluene, 1,4-Dioxane) by liquid ferrate(Ⅵ) were investigated under the same reaction conditions. When it was compared with the ferrate manufactured by the wet oxidation method, the liquid ferrate was more stable. And the stability of liquid ferrate was tested at the storage temperature. As a result, only 17.7% of liquid ferrate(Ⅵ) has decomposed at the storage temperature(4˚C) for 28 days. Among the cyclic compounds, the aniline was rapidly degraded compare to other cyclic compounds, which seems to be due to the electron-donating ability of the substituent, -NH2 group. Especially, when 1,4-dioxane was compared with benzene, the decomposition rate of 1,4-dioxane was lower than that of benzene, suggesting that oxygen atoms hinder the electrophilic reaction. Among 4 cyclic compounds, it was observed that aniline has the highest rate constant than those of other cyclic compounds.
본 논문에서는 반복하중에 의한 반복 경화 및 연화 현상을 나타낼 수 있는 수정 IWAN 모델을 이용하여, 1차원 비선형 부지응답 해석프로그램(이하 KODSAP; Kaist One Dimensional Site-response Analysis Program)을 개발하였다. 개발된 프로그램은 지진하중 재하에 따른 지반의 반복경화 및 연화현상에 의한 부지응답 특성 변화를 재현할 수 있다. KODSAP을 이용하여 기반암 상부 40m인 모형지반의 반복경화 및 연화 정도, 지진가속도의 크기에 따른 부지응답특성 변화를 살펴 보았으며, 현재 실무에서 널리 적용되고 있는 등가선형, 비선형해석과 KODSAP 해석결과(지반의 반복경화 및 연화현상을 고려한)과의 차이점을 살펴 보았다.