Nowadays, artificial intelligence model approaches such as machine and deep learning have been widely used to predict variations of water quality in various freshwater bodies. In particular, many researchers have tried to predict the occurrence of cyanobacterial blooms in inland water, which pose a threat to human health and aquatic ecosystems. Therefore, the objective of this study were to: 1) review studies on the application of machine learning models for predicting the occurrence of cyanobacterial blooms and its metabolites and 2) prospect for future study on the prediction of cyanobacteria by machine learning models including deep learning. In this study, a systematic literature search and review were conducted using SCOPUS, which is Elsevier’s abstract and citation database. The key results showed that deep learning models were usually used to predict cyanobacterial cells, while machine learning models focused on predicting cyanobacterial metabolites such as concentrations of microcystin, geosmin, and 2-methylisoborneol (2-MIB) in reservoirs. There was a distinct difference in the use of input variables to predict cyanobacterial cells and metabolites. The application of deep learning models through the construction of big data may be encouraged to build accurate models to predict cyanobacterial metabolites.
Evaluating the quantitative damage to rocks through acoustic emission (AE) has become a research focus. Most studies mainly used one or two AE parameters to evaluate the degree of damage, but several AE parameters have been rarely used. In this study, several data-driven models were employed to reflect the combined features of AE parameters. Through uniaxial compression tests, we obtained mechanical and AE-signal data for five granite specimens. The maximum amplitude, hits, counts, rise time, absolute energy, and initiation frequency expressed as the cumulative value were selected as input parameters. The result showed that gradient boosting (GB) was the best model among the support vector regression methods. When GB was applied to the testing data, the root-mean-square error and R between the predicted and actual values were 0.96 and 0.077, respectively. A parameter analysis was performed to capture the parameter significance. The result showed that cumulative absolute energy was the main parameter for damage prediction. Thus, AE has practical applicability in predicting rock damage without conducting mechanical tests. Based on the results, this study will be useful for monitoring the near-field rock mass of nuclear waste repository.
본 연구는 MODIS 위성영상을 이용하여 광역적으로 진행되고 있는 식물계절학적 특징을 분석하고자 수행하 였다. 위성영상을 이용한 식물계절학적 특징 분석은 현 장 관찰 자료의 분석을 위한 전반적인 식물계절 경향성 및 변동성에 필요한 정보를 제공해 줄 수 있으며, 현장 관찰 값과 광역 식물계절 관측 값의 연결을 통하여 광 역 수준에서 보다 정밀도 높은 식물 계절현상 모니터링 을 가능하게 한다. 본 연구의 기반이 된 MODIS EVI 자료는 Timesat Algorithms의 double logistic function으로 평활화시켜 분석하였다. 제주→남해안→지리산→소백산→설악산 의 위도 분포에 따라 식물계절 시작일은 늦어지는 경향 을 보였다. 그러나 11년간 주요 산림 지역에서의 식물 계절 시작은 해마다 시작일에 다르게 나타나는 연변동 의 특징을 보였다. 변동 자료를 고차다항식으로 변형한 결과, 제주도는 연간 0.38일, 소백산지역은 0.174일 계 절 시작이 늦어지고, 남해안은 0.32일, 지리산은 0.239 일, 설악산 지역은 0.119일 개엽일이 빨라지고 있는 것 으로 나타났다. 우리나라 전체 식물계절 시작 시기의 특징을 공간적 으로 살펴보면, 주요 산림 지역은 늦어지고, 분지나 산 록의 남사면지역에는 빨라지는 것으로 나타났다. 지역적 으로 살펴보면, 제주도의 남서해안 및 북동해안 사면지 역, 동남해안 지역이 빠른 경향을 보였다. 행정구역별 식물계절 시작 시기를 분석한 결과, 2001 년에는 서울과 경기도, 동해안, 남해안, 마산, 창원, 밀양, 대구, 제주도를 중심으로 빠르게 시작되었다. 이는 서울, 경기도, 마산, 창원, 밀양, 대구 등의 도시지역은 도시화 에 따른 기온상승의 영향인 것으로 해석된다. 이 같은 경향은 2005, 2010년에도 같은 경향으로 보이고 있어 도시화가 식물계절 변화에 중요한 영향을 미치고 있는 것으로 해석할 수 있다. 본 연구의 시간적 규모인 10년 이내에서는 기후변동 에 따른 식물계절 현상의 변이성을 잘 나타내었으며, 이 러한 식물계절 모니터링 기법은 30년 이상의 보다 장기 적인 자료를 축적을 통하여 기후변화 양상에 따른 생물 계절 현상 변화와 해석에 중요한 역할을 할 것으로 생 각된다.