This study proposes a method of separating uranium (U) and minor actinides from rare earth (RE) elements in the LiCl-KCl salt system. Several RE metals were used to reduce UCl3 and MgCl2 from the eutectic LiCl-KCl salt systems. Five experiments were performed on drawdown U and plutonium (Pu) surrogate elements from RECl3-enriched LiCl-KCl salt systems at 773 K. Via the introduction of RE metals into the salt system, it was observed that the UCl3 concentration can be lowered below 100 ppm. In addition, UCl3 was reduced into a powdery form that easily settled at the bottom and was successfully collected by a salt distillation operation. When the RE metals come into contact with a metallic structure, a galvanic interaction occurs dominantly, seemingly accelerating the U recovery reaction. These results elucidate the development of an effective and simple process that selectively removes actinides from electrorefining salt, thus contributing to the minimization of the influx of actinides into the nuclear fuel waste stream.
Cyanobacteria Aphanizomenon population is widely distributed in the world, and well known as harmful algae by producing toxins and off-flavor materials, thus belonging to one of the taxa that became more interested in the field of limnoecology. In this study, the frequency, intensity, and duration of Aphanizomenon occurrence were increased with the abnormal drawdown of water level in the winter in Boryeong Reservoir, and the spatial and temporal characteristics of them are compared with each other in the perspective of hydrometeorology (1998 to 2017) and limnology (2010 to 2017). In Korea, Aphanizomenon flourished mainly in high temperature, and the appearance in the low temperature was rare in total five times. The harmful cyanobacteria Aphanizomenon was observed in the low temperature (December to February) in Boryeong Reservoir from 2014, and then reached a maximum value of 2,160 cells mL-1 in January 2017. In addition, the period exceeding 1,000 cells mL-1 at this time was more than 3 months. This was simultaneously associated with abnormal water level fluctuation in the low temperature (<10℃). The large drawdown of water level in the winter season has the potential to promote or amplify the germination and development of harmful algae. Also, subsequent water quality and ecological impacts (e.g., algal toxins and off-flavor substances) need to be considered carefully.
Rorabaugh(1953)에 의해 재정리된 단계양수시험 해석해 sw = B C p 는 단열암반대수층에서 비선형 으로 증가하는 수위강하에 매우 적합하며, 현장에서 관측된 수위강하 값과 추정된 수위강하 사이의 제곱 근 평균제곱오차(RMSE) 값이 매우 낮음을 보여주었다. 우물수두손실(C p )의 C 값은 3.689×10-19 5.825 ×10-7, P 값은 3.459 8.290의 범위로 산정되었으며, 지표로부터 하부심도로 내려 갈수록 양수율 증가에따른 수위강하는 매우 크게 나타났다. 단열암반대수층에서의 우물수두손실은 다공질매질에서와 달리 단 열특성(단열의 틈, 간격, 상호 연결성)에 의한 영향으로 나타나므로, 우물수두손실의 C 와 P 값은 단열암 반대수층의 난류구간과 고·저 투수성 단열암반의 특성을 해석하는데 매우 중요하다. 그 결과, 우물수두 손실 항의 C 와 P 값에 대한 회귀분석 결과로부터 암반대수층의 난류구간과 수리특성의 관계가 파악되었 으며, C 와 P 값의 관계가 단열암반대수층의 수리특성 해석에 있어 매우 유용함을 확인할 수 있었다.
한국수자원공사에서는 매월 1일 생성한 월 앙상블 유량예측(Ensemble Streamflow Prediction, ESP)을 근거로 월 최적운영 모형인 SSDP모형을 통해 월말목표저수량을 산정할 수 있는 실시간 물 관리 시스템을 구축하였다. 그러나 월 중간에 발생하는 수문기상학적 변화를 반영할 수 없다는 단점을 가지고 있어 이를 보완하자는 필요성이 제기되었다. 이를 위해 본 연구에서는 1일부터 예측시점까지는 그 동안 발생한 강우 관측자료를 이용하고 이후
Shingal reservoir is a relatively small (211ha) and shallow impoundment, and approximately 25 ha of its sediment is exposed after spring drawdown. At least 14 vascular plant species germinate on the exposed sediment, but Persicaria vulgaris Webb et Moq. quickly dominates the vegetation. In order to estimate the role of the vegetation in the dynamics of heavy metal pollutants in the reservoir, Cu concentration of water, fallout particles, exposed sediment, and tissues of P. vulgaris, was analyzed. Cu content in reservoir water decreased from 13.10㎎/㎡ on May 15 (before drawdown) to 3.08㎎/㎡ in June 1 (after drawdown), mainly due to the lowering of water level. Average atmospheric deposition of Cu by fallout particles was 10.84 μ g/㎡/day. Cu content in the surface 15㎝ of exposed sediment decreased from 5.094g/㎡ right after drawdown, to 0.530g/㎡ in 41 days, which is a 89.6% decrease. Therefore up to 99.7% of Cu in the reservoir appears to exist in the sediment, only 0.3% in water. If the rate of atmospheric input by fallout particles is assumed to have been the same since 1958, when the reservoir was completed, cumulative input of Cu during the 38 years would have been 150.35㎎/㎡, which is only 3.0% of Cu content in sediment right after drawdown. Therefore, most of Cu in the Shingal reservoir must have been transported by the Shingal-chun flowing into the reservoir. Standing crop of vegetation on the exposed sediment 41 days after drawdown was 730.67g/㎡, of which 630.91g/㎡ was P. vulgaris alone, and Cu content in P. vulgaris at this time was 6.612㎎/㎡. This was only 0.13% of Cu in the exposed sediment, but was 50.5% of Cu in water before drawdown, or 167% of the average annual input of Cu by atmospheric deposition. If other plants were assumed to absorb Cu to the same concentration as P. vulgaris, total amount of Cu absorbed in 41 days by vegetation on the exposed sediment is estimated to be 1913.3 g, which is a considerable contribution to the purification of the reservoir water.