UHPFRC 15 M 분절형 박스거더에 대한 비선형 재료 및 비선형 기하학적 유한요소해석을 수행하였다. UHPFRC의 인장 및 압축 영역에서의 구성방정식은 공시체 시험을 기반으로 하였고, 체적 대비 강섬유 혼입률이 각각 1.0%, 1.5% 및 2.0%에 대해 해석을 수행하였다. UHPFRC를 위한 3차원 8 node hexahedron brick model과 1차원 embedded steel element를 기반으로 모델링하였다. UHPFRC 박스거더 단면에서 하부플랜지에 14개, 24개, 32개의 15.2mm 강연선을 모델링하여 실험결과와 비교하였다. 하중과 변위관계, 선형거동에서 비선형거동으로 변하는 시점에서 하중 및 중립축 변화 과정이 실험결과와 비교해 볼 때 정확하게 산출되었다. 따라서, 압축 및 인장구역에서 구성방정식을 반영한 재료적 비선형해석, UHPFRC 분절형 박스의 기하학적 비선형 해석이 유효함을 알 수 있다.
Carbon composites for flexible fiber heating element were examined to improve the electrical conductivity in this study. Carbon composites using carbon black, denka black, super-c, super-p with/without CNF or dispersant such as BCS03 and Sikament-nn were prepared. Carbon composite slurry was coated on plane film and yarns(cotton, polyester) and the performances of prepared heating materials were investigated by checking electrical surface resistance, adhesion strength. The plane heating element using carbon black under natural drying condition(25℃) had better physical properties such as surface resistance(185.3 Ohm/sq) and adhesion strength(above 90%) than those of other carbon composite heating elements. From these results, polyester heating element coated by carbon black showed better electrical line resistance(33.2 kOhm/cm) than cotton heating element. Then, it was found that polyester heating element coated by carbon black with CNF(3 wt%) and BCS03(1 wt%) appeared best properties(0.604 kOhm/cm).
PURPOSES : In this study, a fracture-based finite element (FE) model is proposed to evaluate the fracture behavior of fiber-reinforced asphalt (FRA) concrete under various interface conditions.
METHODS: A fracture-based FE model was developed to simulate a double-edge notched tension (DENT) test. A cohesive zone model (CZM) and linear viscoelastic model were implemented to model the fracture behavior and viscous behavior of the FRA concrete, respectively. Three models were developed to characterize the behavior of interfacial bonding between the fiber reinforcement and surrounding materials. In the first model, the fracture property of the asphalt concrete was modified to study the effect of fiber reinforcement. In the second model, spring elements were used to simulated the fiber reinforcement. In the third method, bar and spring elements, based on a nonlinear bond-slip model, were used to simulate the fiber reinforcement and interfacial bonding conditions. The performance of the FRA in resisting crack development under various interfacial conditions was evaluated.
RESULTS : The elastic modulus of the fibers was not sensitive to the behavior of the FRA in the DENT test before crack initiation. After crack development, the fracture resistance of the FRA was found to have enhanced considerably as the elastic modulus of the fibers increased from 450 MPa to 900 MPa. When the adhesion between the fibers and asphalt concrete was sufficiently high, the fiber reinforcement was effective. It means that the interfacial bonding conditions affect the fracture resistance of the FRA significantly.
CONCLUSIONS: The bar/spring element models were more effective in representing the local behavior of the fibers and interfacial bonding than the fracture energy approach. The reinforcement effect is more significant after crack initiation, as the fibers can be pulled out sufficiently. Both the elastic modulus of the fiber reinforcement and the interfacial bonding were significant in controlling crack development in the FRA.
유연도법 섬유요소모델을 통하여 반복하중을 받는 철근콘크리트 교각의 비탄성 이력 거동을 추적하고 직접적인 방법에 의해 변위연성도 평가를 수행하였다. 철근 콘크리트 교각의 극한상태까지의 비탄성 거동을 합리적으로 추적하기 위해 인장강성거동, 기둥-기초면의 불연속 변위 등을 고려하여 철근과 콘크리트의 평균응력-평균변형률 관계, 접촉면요소 등을 실험과 잘 일치하는 기존의 해석 모델을 수정, 적용하였다. 또한 수치해석시 간편하게 적용할 수 있는 직접적인 방법에 의하여 교각의 연성능력을 평가하였으며, 항복변위 및 극한변위의 산출에 영향을 미치는 적분점의 위치, 콘크리트 압쇄 후 강루 철근의 low-cycle fatigue에 의한 파단 시점 등에 대하여 유연도법 섬유요소모델에 적용할 수 있는 값들을 제시하였다. 해석에 의한 변위연성도는 10%이내의 오차를 보이므로, 적용한 해석기법 및 모델에 의한 항복변위 및 극한변위의 평가는 타당하다고 할 수 있다.
이 논문에서는, 섬유가 보강된 직교 이방성 복합재료의 제작 과정에서 발생하는 잔류 응력을 조사하였다. 직교 이방성 복합 재료의 제작 과정은 경화 과정과 냉각 과정으로 나누어 지며 이 과정에서 발생하는 잔류 응력을 3차원 경계요소법을 이용하여 해석하였다. 모재는 선형 점탄성 거동을 한다고 가정하고, 종속 영역법을 도입하여 해석 모델을 섬유 영역과 모재 영역으로 나누었다. PATRAN을 사용하여 모재에서의 잔류 응력 분포를 도시하였으며 해석 결과를 검토하여 잔류 응력이 국부적으로 모재의 항복을 야기시킬 수 있음을 제시하였다.
이 논문에서는, 탄성 섬유와 점탄성 기지로 구성된 2차원의 단일방향 복합재료가 높은 제작온도로 부터 실온으로 냉각될때 섬유와 기지사이의 계면에서 발생하는 특이 열응력을 조사하고 있다. 계면을 따라 발생하는 잔류 열응력의 특성을 조사하는데 시간영역 경계요소법을 적용하였다. 수치해석 결과에 의하면, 계면응력들은 자유경계면 근처에 이르러 급속히 커지는데, 이러한 특이 잔류응력들은 자유경계면 가까이에서 국부 항복을 일으키거나 섬유와 기지의 결합분리를 야기시킬수 있다.
내압을 받는 섬유강화 복합적층 파이프 구조를 해석하기 우해 감절점 원통형 쉘 유한요소를 이용하였다. 이요소는 lockintg현상을 제거하고, 수렴성을 개선하기 위해 감차적분기법, 변위형의 추가, 가정된 전단 변형 도장을 사용한 9절점의 3차원 쉘 유한요소이다. 이 유한요소를 이용하여 여러개의 예제를 해석하고, 결과를 이론식 및 다른 구조해석 프로그램과 비교하였다. 비교결과 유한요소의 수렴도 양호하였고, 섬유강과 복합적층 파이프 구조의 섬유 배향 각도를 증가시킴에 따라 파이프의 처짐은 감소하면서 파이프의 강성이 증가함을 알 수 있고 이는 또한 90.deg.적층 각도가 내압을 받는 파이프 구조의 hoop tension을 유효하게 받을 수 있음을 보여주고 있다.
In this paper, finite element analysis of high-strength SFRC with high tensile strength steel fiber was investigated. Compressive and flexural behavior was ductile when using steel fiber tensile strength 1,600 MPa. Thorenfeldt and Trilinear models were used to describe the compressive and tensile behavior. Inverse analysis was performed to construct tensile model by evaluating flexural behavior. The flexural behavior of test results were similar to analysis results.
본 연구에서는 기존의 저자 등에 의해 수행된 유연도법에 근거한 보-기둥 섬유요소에 수치해석적 방법으로부터 전단변형 효과를 고려할 수 있도록 수정된 정식화 방안과 단면에 대한 비탄성 전단응답 이력 구성관계식을 새로이 제안함으로써 전단 및 휨 - 전단파괴 양상을 나타내는 철근콘크리트 보에 대한 합리적인 해석적 방안을 마련하는 것을 목표로 한다. 주요 실험변수들이 전단거동 특성에 미치는 영향을 파 악하기 위하여 모두 종방향 철근의 항복전에 전단파괴가 일어나도록 설계된 총 6개의 철근콘크리트 보 실험체를 검증 대상으로 저자 등에 의 해 새로이 수정된 구성관계식을 적용한 비선형 유한요소해석 프로그램(RCAHEST)을 통한 해석을 수행하였다. 모든 실험체에 대한 파괴모드 와 파괴시까지의 전반적인 거동 특성을 비교적 적절히 예측하고 있음을 확인하였으며 이러한 연구결과들은 향후, 대형화‧복잡화 되어가고 있 는 전체 구조물에 대한 신뢰도 높은 해석을 수행하기 3차원 해석에도 충분히 활용될 수 있을 것으로 기대된다.
Because significant difference between normal concrete and fiber reinforced ultra-high strength concrete under tension and compression, bond behavior also have significant difference. Based on the finite element analysis of bond test specimens, crack initiation and propagation process were investigated. Analysis results have been validated with test results and crack initiation stress was investigated.
This paper describes the analysis results of coupling beams using steel fiber reinforced concrete for comparison with measure behaviors. Analysis is performed by the finite element analysis program, Vector 2. The results show possibility that relieve complex detail of diagonally reinforced coupling beam.