본 연구에서는 유비쿼터스 식물공장의 재배환경에 필요한 요소들의 센서 네트워크를 구성하고 자동으로 감지하여 적응형 뉴로-퍼지 추론시스템을 통하여 환경변화를 추론하여 식물공장의 재배환경을 적절하게 제어할 수 있는 새로운 자동제어시스템의 프레임워크를 제안하고, 이를 설계하였다. 유비쿼터스 식물공장 환경을 제어하기 위하여 식물공장의 재배환경에 영향을 미치는 환경요소인 실내온도, 근권온도, 습도, 광도, CO2 농도를 측정할 수 있는 센서 네트워크를 구성하고 측정된 환경요소의 변화에 따라 램프, 환기, 습도, CO2 농도, 온도를 제어할 수 있는 장치를 자동으로 제어할 수 있는 식물공장 자동제어시스템을 설계하였다. 이를 위하여 본 연구에서는 센서를 통하여 받아들이는 입력값을 퍼지소속함수로 변화하고 적응형 뉴로-퍼지시스템에 따라 추론하고 평가하여 보다 정밀하게 식물공장을 자동으로 제어할 수 알고리즘을 개발하였고 이를 구현하였다. 개발된 자동제어시스템을 상추 식물공장에 적용한 결과 만족스러운 시험결과를 얻을 수 있었다. 향후 연구로는 식물공장에서 재배하고 있는 작물별 생장모델의 적합도 검정 및 개선을 위하여, 작물별 재배규칙을 보다 상세히 도출하는 것이 필요하고, 작물의 재배에 필요한 지식을 보다 정량적으로 표현하고 지식상에 내포하고 있는 불확실성을 해결하는 것이 필요하다. 더 나아가 식물공장에서 환경인자간의 상호관련성을 보다 정밀하게 수식화하고 이를 추론할 수 있는 정밀하고 과학적인 자동제어시스템의 개발이 필요하다.
내진성능평가 시스템은 구조시스템의 합리적인 분류, 적절한 평가 기준, 그리고 종합적인 평가방법을 포함하여야한다. 외국의 현행 내진성능 평가방법은 데이터의 수집과 주요 평가 항목을 위한 약산식 그리고 평가 점수를 이용하여 전문가의 판단에 근거한 평가 방법을 제시하고 있다. 본 연구는 국내 건축구조물에 예비 내진평가 방법에 중점을 두고 퍼지추론 시스템에 근거한 내진평가방법의 전형을 개발한다. 평가항목의 위계는 건무의 수직, 수평방향을 불규칙성, 비대칭성, 여용성, 그리고 건물 연한을 포함한 전체적인 특성과 부재 단계에서의 상세한 평가 항목으로 구성한다. 퍼지추론방법에 대한 기존의 연구결과를 근허가혀 이용한 내진성능 평가방법에 적절히 적용하기 위하여 4가지 주요 모듈을 설정한다. (1) 퍼지 입력 (2) 퍼지에 근거한 규칙기반 (3) 퍼지추론, 그리고 (4) 퍼지출력으로 구성된다. 더욱이 개별적인 성능 수준에 종합적인 평가지수를 끌어내기 위하여 퍼지추론방법을 적용하였다.
오늘날의 산업용 로봇, CNC 공작기계 및 여러 산업설비들은 시스템간에 관계가 복잡하게 연결되어 높은 신뢰성(reliability)을 달성하여 왔다. 그러나 가동시 발생하는 결과의 고장 가능성은 적은 반면에, 고장 발생의 파급 효과는 매우 높은 것으로 나타났다. 따라서 복잡한 구조의 산업설비들에 대한 안전진단 결과들을 적절하게 분석하고 관리할 필요성이 크게 대두되고 있다. 이러한 안전진단 작업은 여러 가지 정량적ㆍ정성적인 방법들을 포함하는 전형적인 분석방법이 필요하다. 최근에는 고장탐색, 진단처리 작업 및 신뢰성 분석 작업에 지식기반(knowledge-based)을 기초로한 퍼지 전문가 시스템을 적용하고자 하는 시도가 많이 이루어지고 있다. 안전진단 분석에 관한 일반화된 지식은 이들 후속 단계들에서 상당히 효율적일 수 있다. 그러나 이러한 연구를 수행하기에는 지금까지 상대적으로 열악한 계산 도구들을 이용하였기 때문에 안전진단 분석을 행하기에는 한계가 있었다. 그러나 오늘날 컴퓨터를 이용하여 위의 여러 단계들의 수행과정에 안전진단 분석을 행할 수 있는 적절한 방법으로써, 지식-기반(knowledge-base) 전문가 시스템들을 이용하는 방법을 연구하고 있다. 이에 본 연구는 시스템의 설계단계 뿐만 아니라, 시스템의 가동ㆍ유지ㆍ보수ㆍ수리시에도 비전문가가 고장안전진단을 수행할 수 있도록 하는데 목표를 두었다.
The problem of spacecraft attitude control is solved using an adaptive neuro-fuzzy inference system (ANFIS). An ANFIS produces a control signal for one of the three axes of a spacecraft’s body frame, so in total three ANFISs are constructed for 3-axis attitude control. The fuzzy inference system of the ANFIS is initialized using a subtractive clustering method. The ANFIS is trained by a hybrid learning algorithm using the data obtained from attitude control simulations using state-dependent Riccati equation controller. The training data set for each axis is composed of state errors for 3 axes (roll, pitch, and yaw) and a control signal for one of the 3 axes. The stability region of the ANFIS controller is estimated numerically based on Lyapunov stability theory using a numerical method to calculate Jacobian matrix. To measure the performance of the ANFIS controller, root mean square error and correlation factor are used as performance indicators. The performance is tested on two ANFIS controllers trained in different conditions. The test results show that the performance indicators are proper in the sense that the ANFIS controller with the larger stability region provides better performance according to the performance indicators.