In recent years, supercapacitors have attracted extensive attention due to their advantages such as fast charge and discharge rate, high power density and long cycle life. Because of its unique porous structure and excellent electrochemical properties, heteroatom-doped porous carbon (HPC) is deemed as a promising electrode material for supercapacitors. However, it is a great challenge to synthesize electrode materials with large surface area, ultra-high porosity and good electrochemical performance. In this work, two-dimensional conjugated microporous polymers (CMPs) containing ketones were synthesized by a simple one-step coupling reaction and used as carbon precursors. A series of samples (CMP-Ts) were prepared with the procedures of coupling reaction and carbonization. The optimized carbon material has high specific surface area (up to 2229.85 m2 g− 1), porous structure, high specific capacitance (375 F g− 1 at 0.5 A g− 1), and good cycling stability (capacitance retention of 98.8% after 1000 cycles at 5 A g− 1). Further, the supercapacitor has an energy density of 28.8 Wh kg− 1 at a power density of 5000 W kg− 1. This work lays a foundation for the preparation of carbon materials using microporous polymer as a precursor system, provides a new way of thinking, and demonstrates a great potential of high-performance supercapacitors.
이산화탄소 배출이 없는 고분자 전해질 막 연료전지(polymer electrolyte membrane fuel cell, PEMFC)는 수송용, 발전용 시스템에 적용 가능한 친환경 에너지 변환장치이다. PEMFC의 주요 구성품 중 하나인 고분자 전해질 막(polymer electrolyte membrane, PEM)은 구동시간 동안의 높은 수소 이온 전도도와 물리화학적 안정성 갖춘 과불소화계 고분자 (perfluorinated sulfonic acid, PFSA) 기반 PEM (PFSA-PEM)이 상용화 되어있다. 하지만 PFSA-PEM의 단점으로 지적되는 낮은 유리전이온도와 높은 기체 투과도의 보완이 요구되고 있다. 이에 본 총설에서는 PFSA-PEM의 성능 향상 및 단점 보완 을 위해 1) PFSA의 측쇄부 길이를 조절함으로써 이온교환용량의 증가와 고분자의 결정성을 증가시켜 PFSA-PEM의 능력을 향상시킨 연구와 2) 유/무기 첨가제를 도입하여 수소 이온 전도도 및 물리적 안정성을 향상시키는 복합 막 연구 및 3) 다공성 지지체를 도입하여 PEM의 두께를 효과적으로 감소시켜 막 저항을 효과적으로 줄이고 내구성을 큰 폭으로 개선한 다공-충진 막에 관한 연구를 소개하고자 한다.
Cost-effective and sustainable high-performance supercapacitor material was successfully prepared from cellulosic waste (Sapindus trifoliatus nut shells) biomass-derived activated carbon (CBAC) by physical activation method. The CBAC displays nanofiber morphology, high specific surface area (786 m2/ g), large pore volume (0.212 cm3 g− 1) which are evaluated using FESEM, BET and possessed excellent electrochemical behavior analyzed through various electrochemical methods. Moreover, the assembled symmetric CBAC//CBAC device exhibits high specific capacitance of 240.8 F g− 1 with current density of 0.2 A g− 1 and it is maintained to 65.6 F g− 1 at high current density of 2.0 A g− 1. In addition, the symmetric device delivers an excellent specific energy maximum of over 30 Wh kg− 1 at 400 W kg− 1 of specific power and excellent cycling stability in long term over 5000 cycles. The operation of the device was tested by light-emitting diode. Hence, CBAC-based materials pave way for developing large-scale, low-cost materials for energy storage device applications.
Ionomer membranes which consist of polymer backbones attached with fixed charge groups have been traditionally used in various water treatment processes. Recently, they have also gained increased industrial importance in the applications to electrochemical energy processes such as reverse electrodialysis, fuel cells, redox flow batteries etc. A pore-filled ionomer membrane (PFIM), composed of an inert and tough porous substrate and an ionomer that fills the pores, is considered as a promising candidate for various commercial applications because they can be manufactured via a cheap process and also provide both high ion conductivity and excellent mechanical properties. We will introduce the results on the development of high performance PFIMs for various electrochemical applications.
In high-performance cold work applications, tool failure depends on the predominating loading conditions. Typical failure mechanisms are a combination of abrasive wear, adhesive wear, plastic deformation, cracking and edge crumbling. In this paper we demonstrate how the microstructure of tool steels can be positively influenced by modifying the alloying system and the production route to meet the demands of the different loading situations which occur during operation. The investigation was focused on ductility, fatigue strength and wear resistance. Theoretical considerations were confirmed by practical tests.
The achievement of high density at reasonable cost is one of the major challenges of the P/M industry. One of the key factors contributing to the compressibility of a mix is the lubricant. New experimental lubricants enabling higher green density by conventional compaction or temperature-controlled die compaction were identified. The compaction and ejection characteristics of these new lubricants as measured with a fully instrumented lab press are presented and compared to that of conventional lubricants.
Ancorsteel 4300, a high performance Cr-Si-Ni-Mo steel, was unveiled two years ago as the first in a series of powder metallurgy alloys that will simulate wrought steel compositions. Advantages of this alloy include good compressibility, high hardenability, and excellent dimensional stability. More important, however, is that this alloy has the ability to be effectively sintered at and maintain oxygen contents below 500 ppm. This unique blend of performance and processing capabilities provides static and dynamic properties that exceed those of conventional powder metallurgy alloys and approach wrought gearing materials. A second Cr-Si-Ni-Mo alloy has now been developed that offers complimentary performance levels at a lower Mo content. This manuscript reviews properties of the two chromium steels with comparisons to traditional sinter-hardened and heat-treated powder metallurgy alloys.